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1. INTRODUCTION 

1.1. An Overview of the Global Positioning System 

The Global Positioning System (GPS) is a satellite navigation system which 

promises to improve greatly worldwide navigation accuracies in the military and 

civilian communities. The system is currently past the development stage and 

is partially deployed, making it possible for users to test performance under fairly 

normal operating conditions. The system is composed of three separate components: 

the space, the ground, and the user segments. 

The space segment is the satellite constellation. Current plans are for 24 satel­

lites divided into six rings. These rings are inclined at 55 degrees and distributed 

along the equator every 60 degrees as shown in Figure 1.1. The orbital period of 

a satellite is twelve sidereal hours. Each satellite transmits a unique time tagged 

signal that is also modulated with other information including ephemeris parame­

ters used to calculate the satellite's position at the time the signal was sent. Also 

transmitted are status information on the health of the satellites, various correction 

factors, and data usable in developing an almanac describing approximate locations 

of the other satellites. 

The ground segment consists of monitoring and transmitting stations spread 

judiciously around the continental United States (CONUS) and other locations 
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around the Earth. These stations monitor the satellites to make sure they are 

functioning properly. The monitors track the satellite transmissions very precisely 

and determine approximate orbital parameters describing the satellites' motion. 

These are then uplinked to the satellites periodically. The ground monitors make 

sure that transmitted ephemeris data matches the actual satellite orbit as well 

as check that the satellite clocks are sufficiently synchronized to the GPS time 

reference. 

If ground control detects abnormalities, it can uplink new information to the 

satellite and also give commands to alter the satellite orbit. If a satellite is out of 

specification, ground control can change the health status message associated with 

that satellite so that users are warned about suspect information from that satellite. 

Figure 1.1: The proposed 24 satellite, six plane constellation 
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The space and ground segments of the system are maintained by the Department 

of Defense (DoD), but the user segment has been made available to the civilian 

community. 

The user segment consists of passive radio receivers which track the satellite 

signals to solve for their position. A set of four pseudorange measurements are 

needed to obtain a navigation solution. The pseudorange is basically proportional 

to the propagation time of the signal from the satellite to the receiver. The receiver 

measures the GPS time when it received the time tagged signal. By computing the 

difference between received and transmitted times, propagation time is measured 

and, when multiplied by the speed of light, the distance to the satellite is found. This 

distance is called a pseudorange because it is biased by an amount proportional to 

the offset of the receiver clock from GPS reference time. The satellite is synchronized 

to GPS time with an atomic clock which provides an extremely stable frequency 

reference. Most users cannot afford such quality but this is not a problem since 

the receiver can estimate its offset and, eliminate the effect of not being precisely 

calibrated to GPS time. 

The receiver must solve for four unknowns: its position in three dimensions 

and its time offset from GPS time. Thus, at least four independent measurements 

must be available to get a unique solution. The pseudoranges are the measurements 

and the relative geometry of the satellites determine whether there is enough inde­

pendence among the equations to get such a solution. During the normal situation, 

and because of the way the satellites are spread around the constellation, there will 

always be at least four satellites in view above the horizon. When four satellites 

are viewed, the user position and time offset will occur at the intersection of the 
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hypersurfaces of position from the satellites. The error or noise associated with 

each pseudorange perturbs the solution from the true position and time offset. 

If more than four satellites are used to get a solution, and the geometry is such 

that all the equations are linearly independent, then the solution is overdetermined 

and no position can be found which fits all the equations exactly. A solution can 

be found, though, which is a compromise among the equations. The most common 

is the least-squares solution which minimizes the sum-of-squares of the residuals 

associated with each equation when the solution is substituted back into the equa­

tion. A desirable effect of using the least-squares solution is that the error on each 

measurement is attenuated as more satellites are used. 

In contrast to the pointwise or snapshot solution just described, many GPS 

receivers use recursive filters to process the pseudorange measurements. In these 

estimators, an attempt is made to model the time-wise correlation structure of the 

error sources, and, in this way, the effects of the noise can be filtered out and the 

position and time offset estimates can be improved. Typically, a Kalman filter is 

used and the performance criteria is to minimize the mean square estimation error 

of the parameters being estimated. In this setting, the filter can assimilate as many 

measurements as are available, and each is weighted according to its statistical 

worth (even during periods when four satellites are not available). 

Granted that certain prior assumptions are satisfied with regard to the statistics 

of the noise processes, the filtered solution will be optimal in comparison to the 

snapshot solution. Of course, this is not true if the filter model deviates largely 

from truth at a certain time. Here the pointwise solution may provide a better 

solution. Thus both the filtered and snapshot approaches have some good and bad 
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points. The snapshot estimate is not model dependent, but on the other hand 

it does not receive the benefit of any prior information. In contrast, the filtered 

estimate is model dependent, but it has the benefit of a certain amount of memory 

which can be valuable in reducing the effects of certain error sources. 

Even with the limited number of satellites that are now in place, results of 

field tests have shown that the accuracy of GPS is somewhat better than the early 

designers had speculated. This is in part due to the advanced VLSI digital receivers 

which have very low inherent noise levels and also to the increased computing power 

which allows for processing more than four satellite measurements. Some receivers 

are multi-channel and can continuously track multiple satellites, while others are 

single channel and only dwell on a certain satellite long enough to obtain a good 

single pseudorange measurement and shift to another satellite, and so forth. The 

better than expected accuracy is also due to the availability of low-cost crystal 

oscillators which have good stability and thus provide a fairly stable receiver clock. 

Typical position accuracies are on the order of tens of meters for a reasonably priced 

receiver. 

To the dismay of the civilian community, the Department of Defense has made 

the provision to degrade the intrinsic accuracy of the navigation signals which will 

be made available to the civil user. The DoD feels it would be against U.S. security 

interests to make the full accuracy capacity of this navigation system available to 

a possible adversary. This concern is addressed with poUcy of selective availabil­

ity (SA) and will be implemented by altering the normal information from each 

satellite in a way which will add an error in each user's pseudorange measurement. 

These errors will supposedly decrease the accuracy of the user's solution to a level 
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which would not threaten U.S. security. The U.S. military and other special users 

will be given the necessary information required to remove the effects ot SA. It 

turns out that for the civil user, it will be very difficult to reduce the effects of 

SA because the correlation structure of these processes will be for the most part, 

unknown. (Reasonable models have been proposed though and may be suitable 

for analysis purposes.) The civil users may be given the information that SA is 

activated through, through the bits in the navigation message that describe the 

available accuracy. Even so, if selective availability is implemented it will be the 

limiting factor in the accuracy of the user's solution. 

1.2. Assessing the Goodness of the Navigation Solution 

After one obtains a solution, it is appropriate to question how accurate the 

solution is. The most common way of analyzing the goodness of an estimator is 

to consider the variance of the estimate from the true parameter. The estimation 

error covariance matrix describes the dispersion of the estimates from the true values 

when the system is in the normal state. This matrix is normally computed for the 

snapshot solution and is part of the recursive algorithm in the Kalman filter. For 

example if the standard deviation of the estimation error in the north direction is 

known, then a 99% confidence interval may be constructed and if 100 experiments 

were performed, the true north position may be expected to be contained in the 

100 confidence intervals 99% of the time. Thus in the normal situation, one can 

set up a reasonable bound on the estimation error. The normal situation is when 

the assumed statistics of the error sources match the situation at hand. If however 

an abnormal error is present somewhere in the system, the error covariance matrix 



www.manaraa.com

7 

does not correctly describe the actual statistics of the estimation errors, and the 

confidence interval will not contain the true parameter as often as it would when 

the model statistics match the actual statistics. 

There are many sources of error which affect the ability of the position estimator 

to get a solution which is within a specified amount. Most of the error sources are 

known and are accounted for in some fashion; usually by developing a statistical 

model which allows for the effects of the errors to be diminished or removed. These 

error sources will be discussed in later chapters, but the error that is of greatest 

concern is an unannounced satellite clock error. Correction factors describing the 

normal satellite clock drift are transmitted in the navigation message from each 

satellite. This message is updated frequently enough to provide a good fit to the 

actual error structure, so this "error" is of no concern. Each satellite also has 

redundant clocks on board which will be used in the unlikely event that the main 

clock goes out of specification. An unannounced error occurs during the time when a 

satellite clock drifts out of specification and before ground control can either update 

new correction factors, or switch to a different clock, or set the health status bit for 

that satellite to an unusable status. During this time, the receiver continues to use 

the satellite as if it were operating properly, and this may force the user's solution 

out of specification without any warning that there is a problem. 

The paramount effect of an error source is really the induced error in the 

user's solution. If one focuses on the civil aviation problem, the effect can be 

narrowed even further to the error induced in the user's horizontal solution. The 

aviation community still plans on retaining the altitude information obtained from 

the barometric altimeter. Although the altitude estimate derived from the altimeter 
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measurement may be less accurate than the GPS estimate, it does provide good 

relative positioning with other aircraft which have calibrated their instruments to 

the same reference. There is also a tendency to not let go of older well-tried systems 

which people are accustomed to using. 

1.3. Integrity Concerns for Civil Users of GPS 

It is desirable to bound the estimation error during situations when there are 

abnormalities in the system. This brings up the issues of robustness, failure detec­

tion and system integrity. A robust estimator is usually sub-optimal with respect 

to the error model it is built around but is less sensitive to other unmodelled effects. 

Even if the estimator parameters are somewhat different than the actual parame­

ters, there will be no serious degradation in performance if the estimator is robust. 

However, a robust estimator will still diverge from the truth if a large unmodelled 

error is present. 

Many systems rely on failure detection schemes to perform an independent 

verification of the system performance. This is a very broad and diverse subject as 

evidenced by the coverage in the control systems literature 130]. Many schemes are 

based on a statistical test which is designed using the statistics under the normal 

situation. If the current statistics do not support the hypothesis that the system is 

operating normally, then the result is to claim that a failure is present. Other more 

complicated approaches go as far as to model certain failure modes (as well as the 

normal model) and then test which is more likely to be true given the current data 

[6]. (The problem is that there are generally an infinite number of possible failure 

types so a limited set which is fairly representative is generally hypothesized.) If 
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the result of a test is that a failure is present, then many systems take the problem 

one step further and try to determine the error source. This is the identification 

or isolation problem. If a decision can be made with regard to the source, then 

the system can decide on an appropriate response which may include removing the 

faulty sensor from the system or using a back-up system. 

System integrity refers to the ability of a system to detect malfunctions which 

would cause the signals it generates to be out of specification. A system might also 

be constrained to recognize such a condition in a limited amount of time and to 

notify the users, so that they do not rely on information which is out of tolerance for 

an extended period of time. Safety is the primary motivation for these requirements. 

The VOR/DME system is a prime example of a system with a high degree of 

integrity [2]. Self-checking tests are built directly into the equipment and, the 

equipment goes so far as to shut itself off if it detects that it is operating improperly. 

There is also a high degree a redundancy in the system in that if one station is down, 

there are still alternate stations which can be used so that there is no interruption of 

service. Instrument landing services such as ILS/MLS have similar characteristics. 

Out of tolerance signals are detected with a high probability and users are notified 

of the situation within 1-lOs. 

Many of these characteristics are present in GPS but some of them are still 

lacking [2],[14]. Redundancy is provided by the number of satellites which are 

visible at a given time. Only four are needed to get a solution but it will be typical 

to have as many as five to nine satellites visible, when the system is fully operational. 

In the event that ground control cannot communicate with the satellites, the design 

provides for a graceful degradation of accuracy in the parameters describing the 
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satellite position and dock drift. The error-rate in reading the navigation message 

from each satellite is negligible due to the use of parity bits and the ability to 

re-read the message if an error is detected. There is also a certain degree of self-

monitoring built directly into the satellites. If the satellite detects a malfunction 

and cannot rectify the situation, it can switch to transmitting a nonstandard code 

which prevents the receiver from using the satellite. Also, the ground control can 

declare a satellite "bad" for any reason, but the reaction time required to change 

the satellite message accordingly can be rather long. 

The problems that may still exist pertain to the non-negligible probability 

that a satellite will fail to detect the malfunction. In this situation the satellite 

transmits faulty information before ground control can detect the problem and take 

appropriate action. This reaction time may be on the order of an hour. This is much 

longer than can be tolerated when compared with other systems with satisfactory 

integrity. It appears that an additional verification of integrity will be required 

by the civil community. Whether this will be done in the user equipment or at 

independent ground stations remains to be determined. (It is interesting that the 

military users of GPS do not have an integrity problem [2]. This is primarily due to 

use of inertial navigation systems with GPS which provide additional redundancy.) 

Other concerns which blur the definition of system integrity are the many 

ways in which an error manifests itself in the users solution and in the different 

tolerances which may be acceptable in the many different navigation environments. 

Each receiver manufacturer may choose to process a different selection of satellites, 

as well as use a different algorithm with different prior statistics to calculate the 

navigation solution. As a result, the definition of an abnormality (i.e., a system 
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failure) is not well defined. For example, in an oceanic flight environment the 

amount of error that is tolerable may be much larger than what would be allowed 

for a civil aviation user making a non-precision approach. Thus it is not fair to 

disable a satellite simply because its clock is drifting more than usual if the induced 

error in the user's solution is still within tolerance. 

For the purpose of determining the requirements and goals of civil GPS in­

tegrity, the Integrity Working Group of the Radio Technical Commission for Aero­

nautics (RTCA) special committee 159 was formed, at the request of the Federal 

Aviation Administration (FAA), on April 22, 1986 [3]. This group first examined 

the integrity limits and time-to-alarm requirements of existing navigation systems 

and then used these to set down goals which would satisfy future navigation re­

quirements. The requirements and goals which were determined for GPS are listed 

in Tables 1.1 and 1.2, as they appear in [3]. 

Table 1.1: GPS integrity requirements 

Phase 
of flight 

Oceanic 
enroute 

Domestic 
enroute 

Terminal 
area 

Non-precision 
approach 

Alarm limit 12.6nmi l.Snmi 1.1 nmi 0.3nmi 
Time-to-alarm 120s 60s 15s 10s 

Table 1.2: GPS integrity goals 

Phase 
of flight 

Oceanic Domestic 
enroute enroute 

Terminal 
area 

Non-precision 
approach 

Alarm limit 5km 1 1km .5km .1km I 
Time-to-alarm 30s 30s 10s 6s 

A broad range of integrity monitoring techniques were analyzed to determine 
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if these requirements could be satisfied to a degree which would allow GPS to be 

classified by the FAA as a Sole Means Navigation System in the National Airspace. 

Such a system would be required to provide continuous service, even in the event 

than one element in the system (in this case one satellite) has failed. This would 

require that each satellite in view could be removed while the remaining satellites 

would still provide a good solution. Timely warnings of the failure would also be 

required. It was decided by this committee that the 24 satellite GPS constellation 

with an additional integrity monitoring element could satisfy all GPS integrity re­

quirements and goals except the non-precision approach goal, which is clearly the 

most demanding specification. This is in part due to the planned level of selective 

availability, which can induce errors comparable to the desired protection level. 

The current techniques for integrity monitoring may be divided into two groups; 

the self-contained approach and the ground monitoring approach. The self-contained 

scheme implies that the integrity check is performed autonomously by each user. 

This method is also referred to as receiver autonomous integrity monitoring (RAIM) 

and this method is nothing more than a consistency check among the pseudorange 

measurements, and possibly the receiver clock or other navigation aiding sources. 

In the ground monitoring approach, the integrity check would be done at civilian 

ground stations and the results would be transmitted to each user via a separate 

communication link. This method is known mainly as the GPS Integrity Channel 

(GIG) [131. This method takes advantage of the well surveyed location of the an­

tenna to allow a direct check of the range to the satellite. If the estimated range 

does not match the known range, the GIG would send the message that the errant 

satellite is out of tolerance, or alternatively transmit correction factors. 
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2. PURPOSE AND DIRECTION OF RESEARCH 

This work will attempt to develop a method by which the integrity of GPS 

signals-in-space may be assured during the most demanding civil aviation scenario. 

This would include the non-precision approach environment during which an aircraft 

may be performing a series of turns which induce vehicle accelerations of up to 

lOm/s^ (Ig) or even more. The presence of selective availability will also be assumed 

to represent a near worst-case scenario. The GPS signals-in-space specification 

refers to the requirement that the integrity algorithm be able to assure that all 

the satellite signals being used are within specification. An out-of-tolerance signal 

would induce a horizontal error which is larger than a specified protection level. 

The algorithm will also be limited to using only information that is available inside 

the GPS receiver. Information from other aiding sources would surely provide extra 

redundancy but the purpose of this work is to see if there is enough information to 

perform an integrity check using GPS by itself. An overview of previous work will 

first be presented to give a description of the current state of GPS integrity efforts. 

Then a new approach known as the censored Kalman filter will be presented which 

builds upon the results and shortcomings of the earlier works. 

The motivation for the new method is to provide a stronger connection between 

the test statistic and estimation error in the horizontal plane which is the primary 
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error of interest in the civil community. Most of the previous methods derive the 

test statistic in the measurement domain. These approaches are successful in de­

tecting the presence of a single large error in one of the pseudorange measurements. 

The main difficulty is that the result does not give a direct connection to the er­

ror induced in the horizontal plane. The approach to be presented here will place 

the final integrity decision directly in the horizontal error domain. A brief qualita­

tive description of the method follows here, and then a more detailed quantitative 

description is given in Chapter 5. 

The main responsibility of the integrity monitoring algorithm is to perform a 

simple binary hypothesis test where the null and alternative hypotheses are defined 

as 

Hq hypothesis : r<rQ 

H 2  h y p o t h e s i s  :  r > r Q  

where 

r = radial error in the user solution 

rQ = radial error protection level 

In all the detection schemes, the signals that support Hj originate in the mea­

surement domain. It is in this domain that the statistics of the measurement residu­

als under the HQ hypothesis are well known. In the censored Kalman filter approach, 

one first performs an initial binary hypothesis test in the measurement space. The 

HG hypothesis is that the measurement residuals are zero mean with known co-

variance and are time-wise uncorrelated (thus the residuals form a multivariate 
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the data supports then it is possible to question if there is a deterministic way 

to remove the bias from the residuals so that the resulting residuals do support Hg. 

This is where the censoring of the measurement data occurs. The single satellite 

failure assumption is made so only one measurement source is censored. After the 

deterministic inputs are found, one can then calculate the effect of removing these 

inputs from the navigation solution. At this point, the algorithm returns to the 

original hypothesis test in the horizontal plane. 

Using the error covariance matrix from the Kalman filter under HQ, one can 

construct confidence regions about the two filter estimates: the pure filter estimate 

and the filter estimate whose residuals are forced to support HQ. In general, the 

confidence regions could be in a hyperspace with dimension equal to that of the 

parameter space being estimated. For the problem at hand, we are only concerned 

with the horizontal radial error so the confidence regions will both lie in the horizon­

tal plane. If the two confidence regions do not overlap, then it is unlikely (for given 

the test size) that both confidence regions can contain the true horizontal position. 

Using this criteria, an upper bound on the radial error can be formulated at which 

the confidence regions do not not overlap. If the confidence regions are disjoint, 

then the error would be larger than the amount allowed under HQ. The decision 

would then be to accept the H^^ hypothesis. If the statistics of the measurement 

residuals are highly improbable under Hg, then there should be a large distance 

between the two estimates and this is where the power of the test lies. 

After the detection algorithm is specified, its performance is measured by the 

level of the horizontal error that is incurred before the detection algorithm can con­
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fidently and consistently determine that the system is out of specification. These 

classifications are best described in classical diecision theory terms. Consider a sim­

ple hypothesis test where the decision is to choose between either the null hypothesis 

or the alternative hypothesis where the threshold is set for a given test size. The 

test size is the probability that the test supports the alternative hypothesis when 

in fact the null hypothesis is true. It is desirable to design an algorithm with as 

small a test size as possible. If the equipment raises the alarm too often, then the 

user may tend to ignore such warnings. This is also known as the false alarm rate 

or the probability of making a type-I error. Inversely related to the alarm rate is 

the probability of missed detection. This is the probability of supporting the null 

hypothesis when in fact the alternative hypothesis is true. This kind of error is also 

known as a type-II error. The test designer has to trade-off the test size against 

the miss probability. As the test size is decreased (which lowers the alarm rate 

since the threshold is increased) the miss probability is increased. The detection 

probability or the probability of making the correct decision is simply one minus 

the miss probability. Thus one can use these two descriptors interchangeably to 

define the same performance. 

As in most hypothesis testing situations, the conditional probability density 

function given that the hypothesis is true is not well known or easily obtained. 

This density is required to compute the miss and detection probabilities. In this 

situation, one usually has to rely on empirical results obtained from Monte Carlo 

simulation to get an understanding of these parameters. To compound this problem, 

the equations which describe the measurement situation are time varying because of 

the motion of the satellites and the vehicle. One cannot just simulate one location 
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for a limited time and extrapolate the results to all locations and satellite geometries. 

Different satellite constellations can drastically effect the satellite availability and 

the solution accuracy. The computational effort required to do a complete analysis 

is extremely large. Thus, one of the drawbacks of the work described here will be 

the limited amount of empirical data upon which the performance of the integrity 

algorithm will be based. 

The false alarm rate, the miss or detection probability and the level of hori­

zontal protection are the criteria by which the detection algorithms are compared 

for this problem. These are the parameters that are most easily calculated as a 

result of performing Monte Carlo simulation. There are other similar parameters 

which are more difficult to obtain as a result of not knowing the prior probabilities 

associated with certain events. For example, the probability that a satellite will fail 

and produce a bias of a given value in the pseudorange is unknown, even though 

it is very small. This probabihty is needed to compute the unconditional alarm 

rate, where the conditioning on the state of the system, i.e., whether it is failed or 

not, is removed. It is also desirable to know the probability that the alarm will be 

raised on a mission of a given duration. This is the alarm rate which is of greater 

importance to people who actually use the equipment. A discussion of these and 

similar questions are contained in Chapter 4. 

As mentioned at the beginning of this chapter, the performance of the integrity 

algorithm will be dependent on the effects of selective availability and unmodelled 

vehicle acceleration, so these processes must also be part of the Monte Carlo sim­

ulations. In snapshot methods, the vehicle dynamics are suppressed and SA is 

accounted for by simply increasing the horizontal protection level to an amount 
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which is outside of the range which SA could induce. In the Kalman filter ap­

proach, the process and measurement models are loosened in an attempt to provide 

a more robust filter design. The accelerations errors induced by aircraft maneuvers 

are more nearly deterministic than random and do not fit well into the process 

model of the Kalman filter. Thus, a more robust approach may be to not include 

acceleration states in the model, and to simply increase the process model white 

noise amphtudes instead. The presence of SA is acknowledged in the measurement 

model by increasing the value of the measurement noise variance and by leaving the 

time-wise correlation structure of SA unmodelled. 

The body of this thesis is arranged as follows. Chapter 3 gives an overview 

of the governing measurement equations and the accompanying statistics of the 

snapshot and Kalman filter techiques. Details of the Monte Carlo simulations are 

also mentioned. Then a survey of the work that has been done in the integrity 

monitoring area is presented in Chapter 4. This work is classified into either filtered 

or snapshot techniques and the successes and shortcomings of each technique are 

addressed. This will lead to a discussion of the effects of poor satellite geometry 

on the detection algorithms and to a new scheme which takes advantage of the 

receiver clock stability to provide further redundancy during these periods. Chapter 

5 presents a detailed description of the censored Kalman filter approach which builds 

upon most of the previous techniques. Concluding remarks are given in Chapter 6. 
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3. DEVELOPMENT OF A STATISTICAL BASIS FOR INTEGRITY 

MONITORING 

To get a basis for the integrity monitoring algorithms, it is important to know 

how signals which deteriorate system performance are manifested in the GPS mea­

surements and the corresponding position estimates. The inherent error or noise 

which limits the accuracy of the system during normal operation is not of a de­

terministic nature and the effects are best described in statistical terms. Most 

integrity monitoring schemes rely on these statistics as a reference with which ob­

served statistics are compared. If the data are not consistent with the model, then 

the scheme declares that the system is not operating normally. In this chapter, the 

basic measurements and solutions will be presented and this will make it possible 

to identify the statistics of normal measurement and solution errors. 

3.1. The Measurement Equations 

The most common techniques for obtaining a navigation solution using GPS 

are the pointwise and the Kalman filter solutions. The pointwise solution is a solu­

tion of a system of equations where no prior information such as past measurements 

or assumptions about the vehicle dynamics is used. It is also referred to as a snap­

shot solution because it "freezes" the geometry of the satellites and the vehicle at 
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one point in time without any regard for the motion of the vehicle. In contrast, the 

Kalman filter approach has memory in that the solution it provides is a blending 

of past measurements with the current measurements based on certain assump­

tions about the vehicle dynamics. In either solution, each satellite which is tracked 

provides a measurement as shown in Eq. 3.1 [28], [8]. 

\/(x - xs)2 ^ (y - ys)2 -f (z - zs)^ + T -f e (3.1) 

where 

p = pseudorange from user to satellite (m) 

T = range bias due to receiver clock offset (m) 

(x,y,z) = position of vehicle (m) 

(xs,ys)Zs) = position of satellite in vehicle coordinate frame (m) 

e = sum of all measurement errors (m) 

Because the pseudorange is a non-linear function of the vehicle position, the 

problem is linearized about a nominal trajectory. The parameters to be estimated 

become the deviations of the true position from the point of hnearization. This 

point defines a locally-level three-dimensional coordinate frame with (x,y,z) being 

north, west, and up respectively. The clock offset from GPS time appears in a linear 

fashion and is unaffected by the linearization, so the total quantity or the deviation 

from the previous estimate could be estimated in the same manner. The left hand 

side of the linearized measurement given in Eq. 3.2 has the form of a measured less 

a predicted quantity, where the total quantities cancel and the amount remaining is 

proportional to the error in the vehicle position and clock estimates which remain 
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after the linearization, and also to the measurement error e. 

— cos d^pi\x. -f- COS 6ypi\y -f- COS Oi^pt\z zXT + e (3.2) 

where 

iXp = linearized pseudorange (m) 

AT = deviation from prior clock offset (m) 

(Ax, Ay, Az) = vehicle deviations from true position (m) 

^xp, Syp, dzp = angle between range vector and x,y, and z axes 

e = sum of all measurement errors (m) 

The variables to be estimated are the deviations of the basehne position and 

clock estimates from the true position and clock offset. The total solution is the 

superposition of the components of the solution due to the error in the linearization 

and also to the measurement error. In the snapshot simulations, the error due to 

the linearization can be ignored and the estimation error due to the measurement 

noise is analyzed. However, in the Kalman filter simulation the estimation error 

due to both sources must be considered. 

3.2. The Snapshot Solution 

As mentioned earlier, the snapshot solution is simply the least-squares solution 

of the linearized system of equations as defined in Eq. 3.2. No restrictions will be 

put on the solution with regard to prior assumptions about the vehicle dynamics 

or past measurements. This is one of the main advantages of this technique since 

its performance is not at all model dependent. The solution will now be presented. 
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The set of n measurements are put into matrix form as shown below in Eq. 3.3. 

y = Gx (3.3) 

where 

= [Ax Ay Az AT] T 

y = [Api Ap2 Apnj 

COS0xp2 cos^y^i^ COsOzp-^ 1 

COS 6xp2 COS0yp2 cos 02/J2 ^ 

cos &xpii cos OypYi COS dzpxi 1 

(Boldface characters are used to denote vectors or matrices, superscript T denotes 

the transpose operation and E[ • ] denotes the expectation of the random variable 

inside the brackets.) The least-squares estimate of x will be identified with x and 

is given in Eq. 3.4. 

w here 

X = (G'^G)-"^GTy 

Efxl 

(3.4) 

The y vector represents the pseudorange error vector and contains the effects 

of ionosphere and troposphere propagation delays, normal satellite ephemeris and 

clock errors, and receiver noise. Selective availability and satellite clock errors will 

also appear in this vector. When no unusual errors are present, the pseudorange 

error vector is distributed as a multivariate Gaussian random variable with zero 
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mean and covariance cr^I . This will be denoted as in Eq. 3.5. 

y ~ N(0,(T^I) (3.5) 

Linear operations on a set of normal random variable yields another set of nor­

mal random variables specified by their mean and variance. Since the measurement 

errors are zero mean, the induced errors in the solution vector will also be zero 

mean. The variance of x is derived in Eq. 3.6. 

It should be noted that the y vector is not an observable quantity. If this 

were true, the measurement errors could be removed and the induced position error 

would be zero. The measurement residuals however are an observable quantity and 

have known statistics. The measurement residual is the difference between the given 

measurement vector and the predicted measurement vector found by substituting 

the least-squares solution back into the measurement equation given in Eq. 3.3. The 

statistics of the residuals are given in Eq. 3.8. 

(3.6) 

The distribution of the least-squares estimate is given in Eq. 3.7. 

X ~ N(0,P) (3.7) 

ey ~ N(0,V) (3.8) 
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where 

ey = y - y 

= [ l -G{G^Gr'^G^]y 

E[ey] = 0 

V = Var[ey] 

= E[eyey] 

= g(G'^G)~1G'^] 

Before we leave the discussion of the least-squares solution, it is appropriate 

to consider how the satellite geometry affects the solution. The matrix (g'^G)~^ 

describes how much information about the parameters being estimated is contained 

in the measurements. In the navigation community, the square root of the trace of 

this matrix is known as the geometric dilution of precision (GDOP). Other dilution 

of precision parameters of interest (position, horizontal, and time) are related to 

the main diagonal of this matrix and are defined below. 

PDOP = 

HDOP 

E(GTG),: 
i = l 

- 1  

ii 

\ 
i:(GTGi)iTl 
i=l 

iTnN-1 TDOP =  

Physically, the GDOP is related to the volume of the tetrahedron (in the four 

satellite case) formed by the tips of the unit vectors to the four satellites used 

in the solution. If the satellites are nearly coplanar, then there is no information 
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contained in the direction perpendicular to the plane. In this case it will not be 

possible to estimate parameters with components in this direction. This will be 

reflected in a large GDOP. Another viewpoint of the GDOP is that it describes how 

unit variance errors in the measurements affect the variance of the parameters being 

estimated. If the geometry is poor, the main diagonal elements of this matrix will 

be large and the variance of the parameters being estimated will also be large. In 

the extreme case, if the set of measurement equations are not linearly independent, 

T . the matrix G G will be singular and the inverse will not exist. As this condition 

is approached, GDOP will approach infinity. The effects of the satellite geometry 

will play a limiting role in the effectiveness of the integrity algorithms, as will be 

discussed in later chapters. 

3.3. The Kalman Filter Solution 

This section describes how the navigation solution is obtained using a Kalman 

filter [5]. The filter design begins by specifying the process and measurement mod­

els. As in the least-squares approach, the problem is linearized about a baseline 

trajectory and the parameters to be estimated are the deviations from the point 

of linearization. The process model describes how the state vector representation 

of the random process to be estimated evolves with time. This equation has the 

form shown in Eq. 3.9 and is the discrete time solution of a linear system driven by 

white noise. (The letter n will be used to specify the number of satellites used in 

the solution except in Eq. 3.9 and Eq. 3.14 where it refers to the dimension of the 

state vector.) 

^k+1 = ^k^k+^k (3-9) 
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where 

X]j = (n X 1) state vector describing the system state at tj^ 

= (n X n) transition matrix from tj^ to t|^_|_2 

W]^ = (n X 1) driven response vector due to white noise from tj^ to t]^_|_2 

A commonly used model for the random position error in each direction is the 

double integrator plant driven by white acceleration noise as shown in Fig. 3.1. This 

is the natural model which relates acceleration to position and velocity but assumes 

the acceleration error is white. Such a model leads to a random walk process for 

the velocity error and an integrated random walk process for the position error. 

Receiver clock errors are also typically modelled with a double integrator plant 

which has white noise inputs driving both integrators as shown in Fig. 3.2. The 

states for this model are clock bias (s) and drift (s/s) but the flicker component of 

the clock error process is ignored in this model [29]. The constants hg and h_2 are 

the Allan variance parameters which relate the frequency noise to the stability of 

the receiver clock. In the filter model, the white noise amplitudes are scaled by c^ 

(c = speed of hght) to change the units of the clock bias to meters and the clock 

drift to m/s. Values for the Allan variance parameters for crystal oscillators with 

modest and good stabiHty are given in Table 3.1. 

Table 3.1: Allan variance parameters for typical crystal oscillators 

Modest stability Good stability 
h_2 (Hz) 3.80 X 10-21 1.37 X 10-24 1 

ho (s) 9.43 X 10-^° 1.80 X 10-21 1 
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fi(t) 

velocity 
error (m/s) 

position 
error (m) 

white noise 
input 

Ai = power spectral density amphtude of white noise fi(t) (m^/s^) 

Figure 3.1: Model for random position and velocity errors in one direction 

white noise 
inputs 

^2(0 

drift bias 
(m/s) (m) error error 

A2 = power spectral density amplitude of white noise f2(t) (m^/s^) 

= (27r^h_2)c^ 

A3 = power spectral density amplitude of white noise f3(t) (m^/s) 

Figure 3.2: Model for random clock bias and drift errors 
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X =  (3.10) 

These models lead to an eight state Kalman filter with state vector elements 

defined in Eq. 3.10. 

north position error (m) 

X2 north velocity error (m/s) 

xg west position error (m) 

X4 west velocity error (m/s) 

X5 vertical position error (m) 

X0 vertical velocity error (m/s) 

xy receiver clock bias error (m) 

xg receiver clock drift error (m/s) 

The double integrator plant has the (2 x 2) transition matrix given in Eq. 3.11 

for a step size At. The position and clock states are decoupled so the transition 

matrix for the complete system has (2 x 2) blocks along the main diagonal as shown 

in Eq. 3.11. 

$ 0 0 0 

0 $ 0 0 
where $ = 

1 At 

0 0 $ 0 0 1 

0 0 0 $ 

(3.11) 

The W]^ vector describes the contribution to the state vector at tj^_|_]^ due to 

the white noise that enters the model from tj^ to White noise is a zero 

mean random process with the properties that two samples at different times are 

uncorrelated and the expectation of two samples at the same time is an impulse 

function with area equal to the power spectral density amplitude. A Gaussian 

distribution is assumed so Wj^ is completely specified by its mean and variance as 
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defined in Eq. 3.12. 

E[W];l = 0 (3.12) 

ElwjwJ'l 
j  Qk i f  j  = k 

i f j # k  0 

Decoupled position and clock models lead to the diagonal matrix for the 

complete system as shown in Eq. 3.13. 

Ql 0 0 0 

0  Qi  0  0  

0  0  Qi  0  

0 0 0 Q2 

Qk (3.13) 

where 

Qi 

Q2 

AiAt2/2 

AiAt2/2 AjAt 

A2At^/3 4- AgAt A2At^/2 

A2At^/2 A2At 

The Kalman filter measurement model given in Eq. 3.14 is used to describe the 

linear relationship between the current measurement and the current state of the 

random process. 

Zk = + (3.14) 

where 

zy. = (m X 1) measurement vector at tj^ 

Hjj = (m X n) linear connection matrix at tj^ 

Vj^ = (m X 1) measurement noise vector 
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E[vk] = 0 

E[vjvf] 
Rk 

0 

E[vjwf] =  0 V j , k  

The vector is distributed as a multivariate Gaussian random variable with 

mean and variance as defined in Eq. 3.15 and is assumed to be uncorrelated with 

the process noise at all steps. 

(3.15) 

if JV k 

In the GPS case, the only non-zero elements of the matrix are the elements 

along the main diagonal and each element represents the noise variance associated 

the corresponding measurement. The linearized pseudorange measurement equation 

in the Kalman filter has the same form as given in Eq. 3.2 where the linearized 

pseudorange is a measured less a predicted quantity. The measurement vector for 

n satellites and the linear connection matrix to the state are given in Eq. 3.16 and 

Eq. 3.17 (without the time subscripts on the direction cosines or the pseudoranges). 

^T 

HI 

[Api Ap2 . . .  Apn\ 

cos 0 COS0y^n 0 cos #2^2 0 10 

cos6xp2 0 cos0y^2 0 cos^z^g 0 10 

(3.16) 

(3.17) 

COS^X|On 0 cos#ypn 0 QosOzp^ 0 10 

After the process and measurement equations and the accompanying statistics 

are defined, it is a straightforward exercise to obtain the equations which implement 

the recursive estimation procedure. If the performance measure is minimum mean 

square estimation error, the optimal estimator of a set of parameters given the data 
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is simply the mean of the posterior distribution of the parameters conditioned on the 

data. If the statistics are assumed to be Gaussian, then only the mean and variance 

of the conditional distribution are required to completely specify this distribution. 

The Kalman filter provides the mechanism whereby the mean and variance of the 

posterior conditional distribution are updated with each new set of data. The form 

of the update equations for the mean and variance are analogous to those obtained 

from the conditional Gaussian distribution using classical probability theory. The 

formula for the conditional mean is the sum of the mean of the parameters plus 

a term proportional to the mean of the data and leads to the update equation in 

Eq. 3.18. 

xjj = icj^+Kk(zi^-Hi,xj^) (3.18) 

where 

xjj. = best estimate of after processing current measurement 

x, = best estimate xj^ prior to processing current measurement 

Z]j. = current measurement 

Hj^Xj^ = best estimate of Z]^ prior to processing current measurement 

K|^ = gain matrix designed to provide optimal blending 

of prior information with current measurement 

The gain matrix K]^ is the free variable which is used to minimize the mean 

square estimation error. The estimation error is the difference between the truth and 

the estimate as shown in Eq. 3.19. The error covariance matrix defined in Eq. 3.20 

is just the expectation of the squared estimation error since the filter is an unbiased 
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estimator when the filter model matches the truth. The general covariance update 

equation, which is valid for any gain matrix, is found by substituting Eq. 3.18 and 

Eq. 3.19 into Eq. 3.20. The optimal gain, also known as the Kalman gain, is the 

gain matrix which minimizes the trace of this equation. The optimal gain and the 

covariance update using this gain are given in Eq. 3.22 and Eq. 3.21 [5]. 

superscript minus is used to identify a prior variable.) The very first set represents 

the initial conditions of the estimation error trajectory which unfolds as the mea­

surements are processed, and these are generally supplied by the filter designer. 

After each update, the prior information needed at the next step is obtained with 

the projection equations given in Eq. 3.23. The best estimate of the state as the 

next step is the current state projected through the transition matrix. This result 

is obtained by taking the expectation of the process equation given in Eq. 3.9 and 

by noting that the expectation of a sample of a white noise sequence is zero. The 

prior error covariance at the next step is found by taking the expectation of the 

ex - - Xjç (3.19) 

(3.20) 

(3.21) 

(3.22) 

where 

Pj^ = error covariance matrix at tj^ 

prior to processing the current measurement 

The variables Xj^ and Pj^ are needed at the start of each recursive step. (The 
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squared error between the truth and the prior estimate. 

*k+l = 

Pfc+l = +Qk (3-23) 

Given the prior information, the complete recursive process consists of the gain 

calculation, the two updates, and the two projections as given in Eq. 3.18 through 

Eq. 3.23. 

After the system matrices are specified, tuning of the filter is possible by altering 

the assumed statistics of the process noise and the measurement noise by varying 

the elements within the Q and the R matrices respectively. The power spectral 

density (PSD) ampHtude of the white noise inputs in the process model can be 

thought of as specifying the amount of uncertainty there is about the random process 

model from step to step. If the PSD amplitude is chosen relatively large, the filter 

will give less weight to older measurements than it does to newer ones when it 

forms the new estimate. Conversely, the filter never "forgets" old measurements if 

the PSD amplitude is taken to be zero. By varying the PSD amplitude between 

these extremes, the filter designer can improve the filter robustness by affecting 

the time constants of the filter. For example, decreasing the filter time constants 

is helpful in preventing filter divergence if the true process takes a sudden jump 

and conversely, increasing the time constants helps to smooth out the effects of 

certain noise processes. Filter performance is also affected by the choice of the 

noise variance associated with measurement. If the value for one source is large 

relative to another source, the former measurement will receive less weight than the 

latter. The measurement noise variances may be increased artificially to casually 
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account for known colored measurement noise which is not modelled in an effort to 

reduce the number of state vector elements. These alterations lead to a suboptimal 

filter with respect to the assumed correct model, but this may be tolerated in an 

effort to improve the robustness of the filter. After all, a suboptimal filter that does 

not diverge is preferable to an optimal filter that may diverge if the statistics of the 

true random process or the measurement noise change dramatically from the filter 

model. 

Under the assumption that the filter model fits the true process, it is possible to 

define the distribution of the measurement residuals and the state vector estimation 

error. These statistics define the estimator performance during the normal situation 

when no large unmodelled error is present and will provide the basis for the integrity 

checking algorithms. The measurement residual is the difference between the 

actual measurement and the prior estimate of the measurement and is defined in 

When the system is properly modelled, the measurement residuals form a mul­

tivariate innovations sequence which has the same properties as the W|^ sequence 

defined above. The mean and variance are given in Eq. 3.25. 

Eq. 3.24. 

= Zk - (3.24) 

E[v]^] = 0 (3.25) 

where 

Vk -
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The distributions of the estimation error and the measurement residuals are 

given in Eq. 3.26. 

ex = N(0,P[^) (3.26) 

"k = M(O.Vk) 

A natural way to investigate the adequacy of the filter model is to test how well 

the observed statistics match the distributions given in Eq. 3.26. If one is performing 

a simulation, the truth is known and the estimation error can be formed. It is then 

possible to analyze the induced error due to an unmodelled error. However, when 

the filter is implemented in a real situation, the estimation error is not an observable 

quantity and it is not possible to perform a statistical analysis of this parameter. 

In contrast, the measurement residuals are always observable and thus it is possible 

to perform a number of tests on this parameter such as zero-mean tests, tests of 

covariance and tests of whiteness [24]. In this situation, the parameter of interest 

is the estimation error but we usually have to settle for tests in the measurement 

domain and then make an inference about the statistics of the estimation error. 

This is the motivation behind the development of the censored Kalman filter which 

will allow the final integrity test to take place in the estimation error domain. This 

is done by forming a test statistic which is related to the distance between two 

horizontal position estimates which are based on different assumptions about the 

statistics of the measurement residuals. 
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3.4. Aspects of the Monte Carlo Simulation 

In this section, a description of some of the mechanics involved with the Monte 

Carlo simulation of both the point solution and the Kalman filter solution will be 

presented. The purpose of such an experiment in the context of integrity monitoring 

is to analyze the effects of error sources such as selective availability and satellite 

failures on the navigation solution. In this type of analysis only the random mea­

surement error or random vehicle motion need be considered, and total quantities 

such as the total pseudorange measurements or the total position estimates are not 

needed. 

3.4.1. Choosing the set of satellites 

It is required that the satellite constellation be simulated in order to calcu­

late the direction cosines which appear in the linearized measurement equations as 

given in Eq. 3.2. The equations used to obtain the direction cosines are given in 

Appendix A and also in [20]. A few simplifying assumptions are made in these equa­

tions such as circular satellite orbits and a spherical earth. This process is different 

from what occurs inside the GPS receiver where the ephemeris data from the naviga­

tion message is used to calculate the satellite position but for error-analysis purposes 

these simplifications are acceptable. In the simulation, the direction cosines to each 

satellite in the receiver locally-level coordinate frame are calculated by assuming a 

nominal position for the vehicle and by using the simulated position of each satellite. 

If the z-direction cosine from a particular satellite is larger than the sine of a 

specified mask angle, then this satellite is added to the set of visible satellites for 

the given location and time. The mask angle refers to the minimum elevation at 
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which the satellite is high enough above the horizon for the signal to be tracked 

effectively. It is common to use a conservative value of 7.5 degrees for the mask 

angle, which forces the availability of satellites in computer simulations to be closer 

to real situations when low lying satellites may be occasionally obscured by the 

wings of the aircraft. Some receivers are designed to track satellites down to the 

horizon, but for simulation studies a 5 to 7.5 degree mask angle is appropriate to 

be conservative. 

The choice of the satellite constellation has a large effect on satelHte availability. 

The current trend is toward a 24 satellite configuration which will be implemented 

in six orbital planes. A three plane configuration is also being investigated but from 

the standpoint of implementation it is less attractive since it will require re-phasing 

of the satellites already in orbit. There has also been an interest in non-symmetric 

spacings within rings which optimizes geometries based on subsets of the visible 

satellites. 

In a sense, there is a "curse of plenty" in the number of combinations of visible 

satellites which can be formed to obtain a solution. For example if there are seven 

satellites in view, one could chose the best set of four among the 35 combinations 

of four satellites, or the best set of five among the 21 sets of five satellites, or the 

best set of six among the seven combinations of six satellites. With a 24 satellite 

constellation, there are times when as many as nine satellites will be in view, and the 

number of combinations of 4 to 9 satellites which can be used to obtain a solution is 

382. The computational effort required to perform such a search is non-trivial since 

the GDOP calculation for each set of satellites requires a matrix multiplication and 

a matrix inverse of dimension four. 
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It is attractive from an operational standpoint to avoid this search and to 

simply process all the available measurements. Such a solution is known as the all-

in-view solution. This approach is appealing from an integrity viewpoint since the 

redundant measurements allow for a consistency check which is directly related to 

the navigation solution and because the effects of measurement errors are diminished 

as more satellites are processed. The final choice of the number of satellites to be 

used is also a function of the processing capabilites of the GPS receiver. There is a 

trend toward multi-channel designs which allow for continuous tracking of as many 

as eight satellites in parallel. However, single channel receivers which sequence 

among satellites have proven to offer reasonable performance and may offer similar 

performance in an all-in-view implementation. 

3.4.2. The point solution simulation 

The simulation of an estimator based on point solution methods is straightfor­

ward to perform because the solution depends on only the current measurements. In 

this case, one simply generates the measurement error vector using the appropriate 

statistics as given in Eq. 3.5. The SA noise is assumed to be statistically indepen­

dent of the inherent GPS measurement errors so the total error vector is simply a 

set of standard normal random variables scaled by the appropriate standard devia­

tion. A atellite failure is simulated by adding a bias to one of the elements of this 

vector. An external subroutine from the IMSL subroutine library [10] is used in the 

simulation program and it returns a vector of N(0,1) variates which are shaped into 

the measurement errors with the specified distribution. Each call is used to define 

the time history of the measurement error from one sateUite and in this way the 
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errors among different satellites should remain uncorrelated. 

After the measurement vector is found, a set of least-squares solutions are cal­

culated. These include the all-in-view solution and the set of least-squares solutions 

which leave out one satellite at a time. One may also choose to calculate the poste­

rior measurement residuals associated with each of these solutions. The (G^G)~^ 

matrix from each solution is also saved and this provides the integrity monitoring 

algorithm with the covariance matrix associated with each solution and allows for 

the computation of the measurement residual vector covariance matrix as described 

in section 3.2. Each solution which is calculated represents the error which would be 

in the navigation solution as a result of the given measurement errors. Under real 

conditions, these are not observable quantities. However, the difference between 

all such solutions is observable and represents information which can be used for 

integrity monitoring purposes. The measurement residuals are also always observ­

able and are related to the test statistic in some RAIM techniques which will be 

discussed. 

Integrity monitoring refers to making sure that the accuracy of the navigation 

solution is within specification so one of the solutions has to be chosen to represent 

the navigation solution. This is usually taken to be the all-in-view solution since this 

combination of satellites will offer the smallest GDOP among all possible solutions. 

The results of a snapshot experiment that may be used in the integrity algorithms 

are the differences among all calculated solutions, the measurement residuals, the 

navigation solution (which in this case is the actual navigation error even though 

it is unobservable in a real situation), and the accompanying covariance matrices 

for each solution. All the point solution integrity algorithms described in this work 
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will be based on this set of statistics. 

3.4.3. The Kalman filter simulation 

Even though the Kalman filter simulations yield a similar set of parameters 

to work with for integrity monitoring, the simulations are not as simple to per­

form both computationally and conceptually. The difficulty arises in the need to 

generate random processes (rather than random variables as in the point solution 

simulations) which describe the true random vehicle and clock trajectories which 

are to be estimated. To perform an analysis of the effect of a slowly varying satellite 

clock error on the Kalman filter estimation error, a lengthy simulation is required. 

In the point solution, this is done by simply adding a relatively large bias error to 

one of the satellite measurements (because a small bias error has little effect on 

the all-in-view solution error). However, in the Kalman filter the present estima­

tion error is a function of present and past measurement errors and the solution is 

gradually pulled away from the truth as a gradual ramp error continues to enter 

the system. Whereas a large bias may be required to force a specified horizontal 

error in the snapshot solution, the value at which a ramp failure induces the same 

amount of horizontal error may be considerable smaller due to the filter memory. 

The basic simulation procedure is recursive, so the procedure can be described with 

the details of a typical step as will now be presented. 

A trajectory of the true process and the estimate of this process begins with 

the true initial state XQ, the estimate of this state XG, and the corresponding error 

covariance matrix P(^. If all instruments were perfectly cahbrated initially, each of 

these parameters would be zero. In general, there is some uncertainty in the initial 
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position, velocity, and clock deviations from GPS time. These are generally assumed 

to be uncorrelated so the diagonal elements of PQ represent the square of the 

uncertainty in each of the state vector elements and all the off-diagonal elements are 

zero. The set of standard deviations is used to scale a set of independent standard 

normal random variables to form the true state vector at tg. The corresponding 

state estimate is zero. 

After XQ is obtained, the measurement vector is found using the measurement 

model given in Eq. 3.14. Satellite selection is performed as in the point solution 

and yields a set of direction cosines which are used to fill  the connection matrix HQ.  

The true part of the measurement is formed by taking the product of the true state 

and the measurement connection matrix. The observable measurement is formed 

by corrupting the true component with additive white measurement noise and other 

unmodelled errors such as the SA and the satellite failure. In general, the statistics 

used to form the additive white noise vector can be different from the statistics 

assumed in the filter. In most of the simulation work to be presented, the SA noise 

is only casually accounted for by increasing the filter measurement noise covariance 

matrix Rj^ above that which is normal. This does account for presence of SA but 

leaves the time-wise correlation structure unmodelled. 

At this point, the Kalman filter updates the estimate of the state vector and the 

error covariance matrix. The measurement residuals and their covariance matrix are 

calculated as part of the state update so this does not require any extra computation. 

The filter then projects the state estimate and error covariance to serve as the prior 

information at the next step. The true process vector must also be projected to 

the next step and this requires a sample of the Wj^ sequence to be generate with 
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statistics as defined by Qj^ from Eq. 3.13. For the matrix at hand, the only 

correlation between state vector elements is between the position and velocity states 

in the same direction and between the clock bias and drift states. As shown below, 

it is possible to add two scaled independent standard normal sequences y^ and y9 

to generate the correlation structure as required by the (2 x 2) blocks of the 

matrix. 

let 

wi = a yi 

W2 = b yj + c y2 

where 

yi,y2 ~ N(0,1) 

E[yiy2] = 0 

then 

a 

b = Qi2/a 

c \/Q22 -

This process yields 

E[w]^W2] = 0 

Var[w2, W2] 
Qii Qi2 

(3l2 <322 
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In general, the true process may use a different Qj^ matrix from the one assumed 

in the filter for generating the scale factors used to shape the standard normal 

variables into the desired processes. The ability to add the effects of deterministic 

acceleration error to the true state, as would occur during a mild turning maneuver 

in an aircraft, is built into the simulation programs which have been developed. 

However the filter does not account for this type of acceleration error. One way to 

handle this situation is to simply increase the white noise power spectral density 

amplitudes in the filter to a degree which accounts for the amount of uncertainty 

in the acceleration model between steps. The filter will give less weight to the 

previous measurements and will thus have better tracking characteristics during 

periods of large unmodelled acceleration. 

The equations which are used to simulate the deterministic aircraft turns are 

presented below. The turn is parameterized with the period of the turn and the 

bank angle of the aircraft. These parameters then specify the angular and tangential 

velocity of the aircraft and the radius of the turn as shown below. The turn takes 

place about the point of the linearization with initial conditions as specified. The 

state variables xj listed are the same as defined in Eq. 3.10. 

an — ac coswt 

aw = ac sin wt 

ac = g tan 0 

27r 

r = tan 6 

V = UJV 
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where 

6 = bank angle with respect to horizontal plane 

T = period of turn (s) 

w = angular velocity (rad/s) 

r = radius of turn (m) 

V = tangential velocity (m/s) 

ac = centripetal acceleration (m/s^) 

g = acceleration due to gravity (m/s^) 

an — acceleration in north direction 

aw = acceleration in west direction 

Using these definitions, the contribution of an and aw at t^^j into the true 

horizontal position and velocity states for a step size At are given below. 

= ac[—^(sin w At — wAt) sin wt]^ + (1 — cosa;At) cosa;tj^] 

The initial conditions for the aircraft position and velocity at the start of the 

turn are 

xi(0) = -r 

X2(0) = 0 

xgfO) = 0 
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X4(0) = -V 

The true state at the next step is formed according to Eq. 3.9. The current 

true state is projected to the next step through the natural dynamics of the system 

via multiplication by the true transition matrix and by adding the process noise 

vector and acceleration effects to the result. One complete recursive cycle has been 

described and the same procedure may be repeated as many times as is appropriate. 

The data which are available in the analysis of the integrity monitoring algo­

rithms are the state vector estimates, the measurement residuals, the true state 

vector (which is needed to form the navigation error) and the covariance matrices 

for these parameters under the HQ and HQ hypotheses. 

3.4.4. Selective availability modelling and simulation 

Since selective availability (SA) will be the dominant error source in limiting 

the accuracy for the civil GPS user, it must be a part of any conservative simulation 

where the performance of an integrity algorithm is analyzed. The true SA process 

is pseudorandom in the sense that the DoD specifies the structure and thus SA can 

be removed if the proper information is available. To unprivileged users, SA will 

probably appear as a pseudorange bias error whose correlation structure is for the 

most part unknown. The DoD on occasion has made some information about SA 

available to selected groups who where sponsored to analyze its effects. The results 

of such a study are used here and will be discussed in this section [19]. In the cited 

report, a statistical model was developed which had a correlation structure similar 

to that of the SA data analyzed. This model is used here in the Kalman filter 

simulations to represent the true SA process. Even though it is not known how well 



www.manaraa.com

46 

this will fit the true SA (if and when it is implemented), it serves as a reasonable 

model for analysis purposes. Results of limited simulation which analyzed the effect 

of this model on the user's horizontal solution will now be presented. 

The SA model developed in [19] is described with a second order differential 

equation driven by white noise and is given in Eq. 3.27. The result is zero-mean 

stationary random process with damped sinusoidal modes and with a time constant 

related to the decaying exponential term in the homogeneous response. The solution 

of Eq. 3.27 is put into the form of Eq. 3.9 where the state variables are the phase 

variables as shown below in Eq. 3.28. 

X + 20UJQX H- WgX = w(t) (3.27) 

The state model for Eq. 3.27 is let 

= selective availability process x (m) (3.28) 

xg = derivative of (m/s) 

then 

#11 $12 

-WQ$12 $22 

and 

Qk 
Qii  Qi2  

QI2  Q22  

where 

1 
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^12 

^22 

Qii 

Qi2 

Q22 

^1 

2g-/3woAtg.^ 

e-/9^0"^^(cosw]^ At — /3— sin At) 

1 - - /32 cos 2wi A( + /?^ sin2wi Af ) 
4fw3 L w2 

qc g-2^woAt^ _ (.os2wiAt) 

iVQ 

4w 

qc 
4^WQ 

\/l-^2 

1 - -/32cog2w2A< -/3^sin2wi A() 
wf ^0 

WQ 

The following statistics are used to forrri the initial conditions for such a process. 

Qc 

4/3uj^ 

^xiX2 0 

9c 
- 4/3wo 

E[x2] = 0 

: 0 E[x2] 

xi(0) CxiYi 

where 

X2(0) = (Txgyi 

yi ~ N(0,1) 

72 ~ N(0,1) 

E[yiy2] = 0 

Only the three parameters qc, 0 ,  and ujq  are needed to specify this random 
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process. The values arrived at in [19] are given below. 

qc = 2.68182 X 10" V^/s^ 

/3 = 0.4 

(jjQ = 1.17412 X lO^^rad/s 

then 

(Tx^ = 10.18m 

<^X2 = 0.119m/s 

r = 213s 

where 

r = exponential time constant 

1 

To help the reader visualize this type of random process, a sample of such a process 

is given in Fig. 3.3. 

The stated policy of the DoD is that an accuracy of 100m 2-drms in the hor­

izontal plane will be available to civil users. The 2-drms refers to twice the root 

means square value of the horizontal error which translates into twice the HDOP 

times the pseudorange measurement error standard deviation. This two sigma value 

corresponds to a 95% confidence interval on the horizontal error so the induced error 

may be larger than 100m possibly 5% of the time. In order to induce 100m 2-drms, 

the standard deviation of the SA process must be about 33.3m (using the fact that 

100m 2-drms = 2 • HDOP • It appears that the given above in the SA 

model is to small to induce this amount of error. 
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Figure 3.3: Sample of SA processes using damped cosine model 
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A series of Monte Carlo simulations were performed to investigate the effects of 

such a selective availability process on the horizontal estimation error. An optimal 

approach was first taken where the usual eight state filter model was augmented 

with extra state variables which represent the SA process model states for each 

measurement. The justification for this approach is that it serves as a benchmark 

for comparison with suboptimal models which do not account for the SA noise 

correlation structure. 

Since the standard deviation mentioned above was so small, another process 

was added to this process to bring the resulting standard deviation up to 33.3m. The 

additional process used was Gauss-Markov and this process is specified with its time 

constant and mean square value cr^. A Markov process is characterized as a 

process with an exponential autocorrelation function and the Gaussian assumption 

allows the probability distribution to be specified with the mean and variance. In 

this study, the Markov process was used to simulate a slowly varying bias (also 

referred to as a quasi-bias) with a time constant of one hour. Two cases for the 

relative sizes of these two processes were investigated. In case 1, the damped cosine 

process described above was generated and the Markov process was adjusted so the 

sum of these processes had the desired standard deviation. In case 2, the white 

noise amplitude associated with the damped cosine process was increased to yield 

(Tx-^ = 33m and as a result the quasi-bias process required was fairly small. The 

parameters for both of these cases are specified below. 

case (1) 

qc = 2.68182 X 

= 0.4 
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WQ = 1.17412 X 10 '^rad/s 

(Tx^ = 10.18m 

ctM = 31.74m 

= 3600s 

case (2) 

qc = 2.8202 X lO'^m^/s^ 

3 = 0.4 

WQ = 1.17412 X 10 ^rad/s 

(Tx^ = 33.0m 

<tm = 4.48m 

Tjyj = 3600s 

Other filter parameters used were 

At = 1.0s 

A 2 = lOOm^/s^ 

Rjj = 400 m^ i = l,n 

where 

h_2,hQ = The Allen variance parameters corresponding 

to a crystal oscillator with modest 

stability as given in Table 3.1. 
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The simulations where performed using a four satellite solution. In this case, 

the solution is more sensitive to mesurement errors than when redundant measure­

ments are used and thus represents a situation where the effects of the SA are most 

harmful. The result of modelling the colored measurement noise processes is a state 

vector with 20 elements (20 = 8 + 4 x 3). Four-hour simulations were performed 

(4 X 3600 steps) for each case of the SA structure described above. As would be 

expected, the experiments where the SA was mostly a slowly varying bias (case 1) 

did not experience large horizontal error excursions as often as when the SA was 

changing more rapidly (case 2). This is mainly of result of the filter estimating out 

the slowly varying components of the SA noise whereas the faster components are 

estimated to be zero. Thus rapidly changing SA errors (on the order of minutes) 

did the most damage in the estimation error. Fig. 3.4 and Fig. 3.5 show exam­

ples of large SA induced horizontal error excursions for case 1 and case 2 type SA 

structures. 

Because the SA noise was somewhat oscillatory in the case 2 experiments, the 

horizontal estimation error also contained oscillatory trends. In some simulations, 

there were times when the average horizontal error stayed above 100m for as long 

as a four minutes. The four-hour experiments yielded 10400s when the HDOP was 

less than 2.0. Of these experiments, there was a total of about 1250s of data when 

the average horizontal error exceeded 100m and this corresponds to 12.5% of the 

data. The horizontal error standard deviation as supplied by the error covariance 

matrix was between 50m and 70m during these experiments which is reasonable for 

an HDOP between 1.5 and 2.0 and for a measurement error standard deviation of 

33m. 
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HORIZ. ERROR TRflJ 
ERROR O 

SIGMA OF HAG, 

56. 00 64.00 48.00 40. 00 32.00 16.00 24. 00 
SECONDS 

B. 00 0.00 

Figure 3.4: Sample horizontal error due to SA noise from a case 1 experiment 
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HORIZ. ERROR TRflJ 
HAG OF SV. 1,3 ERROR O 
SIGMA OF HAG. <> 

OTM 

64.00 48. 00 56. 00 40. 00 24. 00 32. 00 16. 00 8. 00 0. 00 
SECONDS 

Figure 3.5: Sample horizontal error due to SA noise from a case 2 experiment 
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In the case 1 experiments where the SA noise was mainly a quasi-bias, the 

horizontal error was more noisy and had less periodic structure than the previously 

mentioned experiments. Even so, there were still a few sizable excursions when the 

average horizontal error was above 100m. Out of the same 10400s of reasonable 

geometry, there were 540s when the average error was larger that 100m and this 

corresponds to 5.2% of the data. It should be noted that times when the noise in the 

horizontal error trajectories crossed the 100m level were not included in 540s figure. 

This is because it is expected that the navigation error in the vehicle trajectory 

would follow the average trajectory and not the noisy one. 

These results suggest that even if one attempts to model the selective avail­

ability noise and if only four satellites are used in the solution, then the SA noise 

processes which change fairly quickly (such as over minutes) can do the damage in 

the horizontal plane that they are intended to do. Also, by changing the SA pro­

cesses fairly quickly the augmented filter tends to lose its effectiveness by estimating 

the processes to be zero (which makes sense because the models are of zero mean 

processes). In most real situations it is impractical to estimate the SA processes be­

cause of the high-dimensionahty in the state vector. If SA is not present, the extra 

states will actually tend to hurt filter performance because the model is not correct 

in this situation. As mentioned earher, a simple way to account for the presence 

of SA is to increase the size of the measurement noise covariance and to leave the 

time-wise correlation structure of the SA process unmodelled. This leads to quite 

an increase in the Rj^ matrix. Usually the nominal measurement noise variance is 

on the order of lOOm^ whereas if SA is added the resulting variance is 1200m^ and 

this tends to de-weight the measurements considerably. 
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If, however, an all-in-view solution is implemented with the casual SA mod­

elling, the effects of SA are dramatically reduced. This is reasonable from the 

viewpoint that the HDOP in the all-in-view solution is usually about 1.1 whereas 

it is typically 1.5 in the four-satellite solution. Results of such a simulation yielded 

a maximum SA induced error of about 60m which checks with the HDOP values 

just mentioned. 

3.4.5. Calculation of integrity algorithm performance 

This section describes how the information obtained from the Monte Carlo 

simulation is used to calculate certain performance characteristics of an integrity 

algorithm. Regardless of the method use to calculate the observable statistics, 

these data are compressed into a single scalar test statistic which is compared with 

a predetermined threshold and a decision is made as to which hypothesis will be 

supported. In simulation analysis, the truth is known so the results of each test can 

be checked for correctness. For a given set of experiments, the unconditional and 

conditional alarm rates as well as the conditional miss rate and detection probability 

are computed as given in Eq. 3.29. 

^ Number of experiments when q > Q , 
Pa = T r : 7 3.29 

iotal number of experiments 

P 
Number of experiments when q > Q but r < rg 

Number of experiments where r < rg 
^ Number of experiments when q < Q but r > rg 
P m = 

Number of experiments where r > rg 

Pj = 1 - Pm 

where 

q = test statistic 
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Q = threshold 

r = radial error in navigation solution 

tq = tolerable radial error specification 

The first two probabilities are computed with normal measurement errors in­

cluding SA and this allows the threshold to be set empirically according to a spec­

ified acceptable alarm rate. The last two probabilities are usually computed when 

an unmodelled error has been added to the measurement vector to induce an error 

which exceeds the protection level. The miss rate is dependent on the size of the 

bias added so this parameter is generally calculated for a number of different bias 

levels. 

Another performance measure which has been suggested, in [15] is the uncon­

ditional miss rate. This would be calculated as shown in Eq. 3.30. 

^ Number of experiments when q < Q but r > rn 
Pum = T r 7 (3.30) 

iotal number oi experiments 

This parameter would represent the fraction of time the horizontal error was larger 

than the protection level regardless of whether the system was operating normally 

or abnormally. The experiments for such a simulation would need to contain the 

correct proportion of failures and non-failures from the statistical population which 

contains all the possible measurement errors. This would be a difficult experiment 

to design since the prior probability of a satellite failure of a given magnitude is not 

well known. It is expected to be very small, though. 

One may wish to take a simpler approach to calculating the unconditional miss 

rate. This could be done by first discretizing the possible failure sizes and then by 

averaging the miss rate for each failure size to form an overall miss rate. It turns 
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out that small bias errors do not induce horizontal errors in the all-in-view solution 

which are larger than the protection level. Also, very large catastrophic errors can 

be detected with zero miss rate. The bias levels in between this range are known as 

soft-failures whereas the very large errors are hard-failures. If hard and soft failures 

are equally likely to occur (for lack of a better ratio) then the unconditional miss 

rate can be formulated as in Eq. 3.31. 

Pum = 2 Prob(miss | soft-failure) 4- - Prob(miss | hard-failure) (3.31) 

The miss rate for the hard-failures is zero so the second term vanishes. The 

conditioning on the soft-failures can be removed by averaging the miss rates over 

different levels of bias as shown in Eq. 3.32. 

1 m 

All of the performance measures described above are highly dependent on the 

satellite geometry so the correct proportion of good and bad geometry is important 

in obtaining reasonable estimates of these parameters. In [15] the miss rate for 

one bias level and a given protection level was computed as a weighted sum of the 

miss rates during good and bad subsolution geometry periods. An extreme example 

of such a calculation is given below and it shows the dramatic effect that a small 

proportion of poor geometry can have on the overall miss rate. Suppose that only 

half of the soft-failures can be detected during bad subsolution geometry and that 

(3.32) 

where 

Ab = bias increment 

mAb — bias at which there is zero miss rate 
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the miss rate during normal geometry is .01. Then if the poor geometry lasted 6 

percent of the time, the overall miss rate would be .4 as shown below. 

Pm = (.06)(.5) ^(.94)(.01) 

% .04 

In this example the overall miss rate is dominated by the integrity algorithm 

performance during the poor geometry periods. It can be seen that any increase 

in the proportion of poor geometry as would occur if one or more satellites was 

not operating (and known to be out of service), would have a noticeable effect on 

the miss rate. The value of .5 for the miss rate during poor subsolution geometry 

is clearly too high to provide good failure detection. Further redundancy will be 

needed to bring this value down to the size of the miss rate during good geometry. 

The miss probability is related to the action of the integrity test when the 

horizontal error is out of specification. In the usual situation the user solution is 

within specification and it is desirable that the test has a reasonably very alarm 

rate during these times. Even if the alarm rate for each test appears to reasonably 

small, the probability of an alarm over an extended mission of many hours may 

not be acceptable. The probability that an alarm occurs over a mission when m 

tests are performed can be computed as follows. It is assumed that each test is 

independent and has an alarm rate a.. 

Prob(at least one alarm during m tests) (3.33) 

= 1 — Prob(no alarms during m tests) 

= 1 — Prob(no alarm at t^ and no alarm at t2 

• • • and no alarm at tm) 
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Table 3.2: Probability of alarm on a five hour mission 

a Prob(alarm during mission) 
.001 .973 

.0001 .698 
.00001 .0354 

.000001 .00359 
.0000001 .000360 

= 1 — |Prob(no alarm at t-)j ™ 

= 1 — [ 1 — Prob(alarm at t-) 

= 1 - ( 1 - a 

Suppose that the test is performed every 5 seconds and the mission lasts five 

hours. This would generate 3600 tests. If the alarm rate for each test was .001 then 

the probability of an alarm on this mission is .97 which means there would almost 

surely be an alarm. Table 3.2 gives similar results for different values of the alarm 

rate and 3600 tests. 

Clearly the alarm rate will have to be < .000001 before an acceptable overall 

alarm rate for a complete mission can be achieved. Because of the relationship 

between the alarm rate and the detection probability, it appears that the horizontal 

protection level will have to be relaxed considerably to allow such a small test size. 

These concerns will be addressed during the discussion of each integrity algorithm. 
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4. REVIEW OF INTEGRITY MONITORING METHODS 

A number of different integrity monitoring algorithms have been presented 

over the past few years. All of these schemes show promise for satisfying integrity 

requirements with regard to the enroute and terminal approach phases of flight. 

Selective availability is the noise source which currently puts most schemes out of 

reach of satisfying the non-precision approach requirements of protecting against a 

100m horizontal error with a 6-10s reaction time. The satellite geometry also plays 

a key role in all the schemes since if a certain amount of redundancy does not exist 

in all subsolutions of size one less than the number of satellites in view, then it 

is difficult to detect a large error on certain satellites. This section will present a 

review of the currently known integrity monitoring methods and how each method 

is affected by selective availability and poor subsolution geometry. 

Two different approaches to integrity monitoring were first presented at the 

annual meeting of the Institute of Navigation (ION) in 1986. The work presented 

by Lee [17] was based on point solution methods whereas the method presented 

by R.G. Brown and Hwang [6] used a Kalman filter approach. Since then, there 

has been a number of methods proposed which are based on either the pointwise 

solution or the Kalman filter solution. 
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4.1. The Range and Position Comparison Methods 

At the time when Lee was formulating his integrity monitoring method, the 18 

satellite configuration plus three active spares was the constellation that was envi­

sioned. In order to be conservative with respect to satellite availability, the scheme 

he developed assumed that only five satellites would be used in the algorithm. Lee 

presented two test statistics, one in the range domain and the other in the solution 

space. The range comparison method (RCM) is based on the difference between a 

range measurement and the predicted range using the solution from the remaining 

four satellites. The position comparison method (PCM) is based on differences in 

one coordinate direction between two solutions formed by using different subsets of 

four satellites from the set of five. Each of the range or position differences that 

can be formed has the form shown in Eq. 4.1 where each difference is related to the 

error on each measurement through a scale factor related to the satellite geometry. 

It turns out that in the five satelHte case there is only one independent equation 

(or one degree of freedom) among all such differences and thus all position or range 

comparisons are related to each other through a known scale factor. 

5 
Q = ^ aj e; (4.1) 

i=l 

where 

ej = range error on the ith satellite 

aj = coefficients that depend on satellite geometry 
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The integrity check is a binary hypothesis test as defined below. 

Hq hypothesis : no-failure state, Q is zero mean with known variance 

H2 hypothesis : failure state, Q has non-zero mean but known variance 

The test is 

accept HQ if |Q| < d 

accept H2 if |Q| > d 

where 

Q = test statistic 

d = threshold for particular difference and given alarm rate 

A desirable attribute of this method is that it is possible to derive closed form 

solutions for the false alarm rate, the miss rate and the detection probability and 

these expressions are given in Eq. 4.2. In this analysis, it is assumed that only 

one satellite can fail at a time and each is equally likely. The satellite failure is 

parameterized as being fixed at M or -M with no added noise. 

= Prob[ jQI > d given Q ~ N(0, ctq)] (4.2) 

1 5 
Pm = - ̂  Prob[|Q| < d given Q ~ N(ajM,a-Q. )] 

^i=l ' 
Pd = 1 - Pm 

where 
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<7 'h- = 

9 9 9  
+ ^SA 

2 (Tjyj- = inherent GPS measurement error variance 

(9.7m) 2 

9 (Tg ^ ~ Selective availability noise variance 

= (33.3m)2 

The coefficients of the range errors given in Eq. 4.1 are determined by the 

satellite geometry for each subsolution so the threshold and the miss probabihty 

for each test are different. To obtain an estimate of the miss probability which is 

representative of the overall system performance at a typical location, the satellite 

geometry in Chicago was sampled every half hour for 24 hours and this generated 

48 geometries. (One of these was removed since only four satellites were visible.) 

At each location, the level of the satelhte failure was varied between 50m and 400m 

in 50m increments and the detection probability for each bias was calculated. The 

results for each bias level from all the geometries were pooled together to generate 

an overall detection probability in Chicago. The threshold was set to yield a false 

alarm rate of .004. 

The results of this analysis are not encouraging in that the detection probabil­

ity for a range bias as large as 400m was only .75 with SA and .90 without SA. Lee 

concluded that any other receiver-based detection scheme which uses only five satel­

lites would yield similar results. However, it is possible that the results reported 

by Lee are pessimistic for a number of reasons. No mention is given to the level of 
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horizontal error which is induced in the five satellite solution due to the different 

levels of range bias error. It may turn out that the detection probabilities could 

be significantly improved if the final results of each experiment are made in the 

horizontal plane. In this way, experiments where the range errors were not detected 

would be counted as a miss only if the horizontal error in the five satellite solution 

was larger than a specified protection level. Is is also possible that the results are 

pessimistic due to certain poor geometries which dominate the statistics. When 

more than five satellites were visible, Lee chose the set of five which yielded the 

best HDOP in combination. The criteria should be to choose the set of five satel­

lites whose largest subsolution HDOP is the smallest among the worst subsolution 

HDOP from each set of five satellites. In this way the coefficients in Eq. 4.1 will 

be as small as possible and thus the variance associated with the distribution will 

be as small as possible. These concerns point out the problems encountered with a 

five satelhte integrity approach [7]. 

Lee has since followed up this earher work with a six satellite study in which the 

test statistic is a 2-tuple since there are now two independent equations which can be 

obtained from all position and range differences [18]. Once again Lee concluded that 

the RCM or the PCM is not robust enough to satisfy the non-precision requirements 

but may provide integrity at a larger horizontal error specification. 

4.2. A Geometrical Approach to RAIM 

A method of RAIM proposed by A. Brown and Jessop [4] which is also based on 

the point solution addresses the problem of poor subsolution geometry and places 

the integrity check in the horizontal plane. Brown assumed that a PDOP < 6 
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corresponds to a 100m 2-drms horizontal error. Selective availability is the primary 

noise source and the PDOP criteria places a fundamental limit on the geometry 

which will bound the error at this level. For integrity purposes all n combinations of 

n-1 satellites must also have a PDOP < 6 to have similar horizontal error statistics. 

The all-in-view solution is considered the navigation solution. 

The horizontal protection provided by such geometry is arrived at with the 

following heuristic argument. If no large errors are present in the set of measure­

ments and the geometry requirements are met, then all n solutions should lie within 

a circle of radius 100m. Thus the distance between two solutions may be as large 

as 200m with no failure present. Therefore, if a distance can be found which is 

larger than 200m then the conclusion is that a failure has occurred in a satellite. 

It is then postulated that the protection level provided by such a scheme is 300m 

since the subsolution which does not use the failed satellite is within 100m of truth 

and a 200m distance among solutions is allowed before the alarm is raised. Similar 

arguments are made for different size circles within which all un-failed subsolutions 

must lie and it is pointed out that these tests will lead to different alarm rates as 

shown in Table 4.1. 

Table 4.1: Protection of RAIM verses accuracy of solution 

Alarm limit 100m 150m [ 200m 
Integrity level 200m 250m ' 300m 
False alarm rate high medium low 

An extensive simulation of the satellite availability and the resulting GDOP 

over the CONUS was performed using two different 24 satellite constellations, one 

having three planes and the other six planes. Table 4.2 gives the results of the 
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availability analysis for both configurations using a 5 degree mask angle. 

Table 4.2: Percentage of time n satellites are visible 

3-plane 25.9 17.3 29.2 24.0 3.5 0.3 
6-plane 2.3 37.7 49.2 10.7 0.1 0.0 

n 6 7 8 9 10 11 

Based on the GDOP calculations for subsets of the available satellites, the 

percentage of time that detection and isolation would not be possible with these 

two configurations was calculated using the simple criteria for the FDOF of each 

subsolution. Although no specific isolation technique was given, it is implied that 

isolation is possible if every subset of n-2 satellites satisfies the FDOF criteria. The 

results of such calculations are given in Table 4.3 and Table 4.4. 

Table 4.3: Percentage of time detection is not possible 

3-plane 6-plane 
i % time % time 
! .46 6.56 

Table 4.4: Percentage of time isolation is not possible 

Alarm limit 200m 400m 800m 
FDOF limit 6 12 24 
3-plane 4&6 31.1 20.5 
6-plane 24.2 12.4 2.4 

There are a number of useful results of this study. It is clear from Table 4.3 that 

the 3-plane constellation is better for detection purposes since the poor subsolution 

geometry occurs only .5 percent of the time compared to 6.6 percent for the six 
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plane. The six-plane configuration is more symmetric than the three-plane so the 

poor geometries get repeated more times per day. In terms of isolation, the six plane 

configuration appears to be better but the results are not spectacular. Table 4.4 

suggests that if one is willing to put up with a larger PDOP limit and thus a 

larger protection level, then the isolation percentage can be improved. It is believed 

that these results are pessimistic due to the oversimplified criteria and that much 

better isolation results can be achieved [26]. This work does point out, though, 

the dramatic role that the satellite geometry plays in the integrity problem, since 

it puts a fundamental limit on the percent of time that the geometry yields the 

minimum redundancy for integrity monitoring. 

4.3. The Maximum Separation Among Solutions 

A similar approach to the one mentioned above was presented independently at 

the first meeting of the Satelhte Division of the ION in 1987 along with A. Brown's 

work. This analysis by R.G. Brown and McBurney [7] used the maximum separa­

tion among subsolutions as the test statistic and presented Monte Carlo simulation 

results that are more optimistic than Lee's results and are in basic agreement with 

those given by A. Brown. The algorithm for performing the integrity check is as 

follows. 

1. Compute the n least-squares solutions using n-1 satellites leaving one of the 

satellites out at a time. 

2. Compute the largest distance among all such solutions in the horizontal plane. 

This is the test statistic. 
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3. Compare the test statistic with a predetermined threshold which is determined 

empirically for a specified alarm rate. 

4. If the test statistic is larger than the threshold, conclude that a failure is 

present and that the error in the all-in-view solution is larger than the level 

protected by the threshold. 

The rational behind this approach is that if only one satellite has failed, then 

the subsolution which does not use this satellite will not be affected by this error. 

This is the good solution and it should be displaced from the other solutions which 

all use the errant satellite. It may turn out that the largest distance is between 

subsolutions both of which use the failed measurement. Thus identification is not 

provided for in this approach. However, all the subsolutions have been computed 

so it is not a burden to compute the measurement residuals for each solution. The 

good solution should have the smallest squared residuals. 

The alarm rate was set at .003 and a Monte Carlo simulation was performed 

to determine the threshold which yielded this alarm rate for three different noise 

levels corresponding to different levels of selective availability. The 24-satellite six-

plane constellation was sampled in Chicago every 4.5 minutes for 36 hours and 

this yielded 480 different geometries. If any subsolution had an HDOP > 3.0 then 

this geometry was removed from the simulation and this accounted for roughly 5 

percent of the geometries. This agrees with the percentage of the time that failure 

detection is not possible as determined by A. Brown and repeated in in Table 4.3. 

The measurement errors were distributed as the sum of the inherent GPS error with 

a standard deviation of 14.1m and one of either of two levels of SA. These levels are 

referred to as half and full SA and have standard deviations of 16.7m and 33.3m 
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Table 4.5: Threshold for alarm rate of .003 at three noise levels in Chicago 

Level of SA No SA Half SA Full SA 
Standard deviation 14.1m 21.7m 36.2m 
Threshold 85m 130m 217m 

respectively. The thresholds obtained with good geometry and the different levels 

of SA are given in Table 4.5. 

It turns out that large horizontal errors due to selective availability, which 

appear due to a multiplicity of errors in all satellites, are very difficult to detect, 

and thus the threshold is set to a large enough value so that the protection provided 

by this threshold is out of the reach of SA during periods of good geometry. It is 

likely that SA will trigger the alarm at this threshold during a period of poor 

subsolution geometry, so these geometries were considered separately. Bias errors 

were then added to each satellite in succession at each geometry and the maximum 

separation among subsolutions and the all-in-view solution from each experiment 

were used to compute the miss rate for a given horizontal error protection level. 

Small bias errors did not induce enough large errors to compute a meaningful miss 

rate. On the other hand, very large bias levels were detected with essentially zero 

miss rate. The bias levels which are important are those in between these extremes. 

The horizontal protection provided by sufficiently small miss rates (less than .01) 

for the bias levels in this hard-to-detect range are given in Table 4.6. 

These results point out the level of integrity which may be possible using GPS 

as the only source of redundancy during times when the subsolution geometry is 

acceptable. If all 24 satellites are functioning properly, this may be as high as 95 

percent of the time. However the loss of even one satellite will surely decrease this 
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Table 4.6: Horizontal protection for alarm rate of .003 at three levels of SA 

Level of SA 
Protection level Bias levels 

when Pd > .99 Level of SA Optimistic Pessimistic 
Bias levels 

when Pd > .99 
No SA 100m 125m 200-300m 

Half SA 175m 210m 300-400m 
Full SA 250m 300m 450-550m 

amount. If these poor geometry situations can be handled in some fashion, then 

this approach seems to be a viable method of integrity monitoring. 

Using the data that was used to generate Table 4.6 it is possible to calculate 

an average miss rate as defined in Eq. 3.32. Suppose the protection level is set to 

250m during full SA and the alarm rate remains at .003. For these conditions, one 

accumulates the number of misses due to different levels of bias error. For a bias 

less than 250m no horizontal errors larger than the protection level were induced. A 

hard failure corresponds to a bias larger than 700m and there are no misses for this 

situation. The number of experiments w^here the horizontal protection is exceeded 

are the points in the space and the number of these experiments where the 

alarm was not raised are misses. The number of misses for different levels of bias 

are given in Table 4.7. Starred quantities refer to an extrapolated quantity. 

Using Eq. 3.32 the average miss rate and detection probability are calculated as 

shown below. 

Pm = 

% 

Pd = 

2^6028^ 

.001 

.999 
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Table 4.7: Maximum separation misses for different failure levels 

Bias # Points in 
level (m) Hi space ^ of misses 

0-250* 0 0 
300 17 2 
350 73 4 
400 179 3 

' 450 388 2 
500 596 3 
550 825 0 
600 1025* 0 

^ 650 1300* 0 
700 1600* 0 

Total 6028 14 

This parameter represents a three-fold increase in the integrity of the system 

at the given protection level with the caveat that some provision will be made to 

perform the integrity check during periods of poor subsolution geometry. 

4 . 4 .  The Range Residual Squared Approach 

An approach which is based in the measurement domain is the range residual 

squared (RRS) test and was first presented at the National Technical meeting of 

the ION in 1987 by Parkinson and Axelrad [27], [25], [26]. The test statistic is 

the sum of squares of the measurement residuals divided by the variance of the 

measurement errors. When the measurement errors are zero mean with known 

variance as described in section 3.2, then the test statistic is a chi-squared random 

variable with n-4 degrees of freedom. This statistic is formed as shown in Eq. 4.3. 

Q = -^(y - y)^(y -y) (4.3) 
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where 

2 (T = variance of measurement errors 

The integrity check consists of the following simple hypothesis test. 

n 
HQ hypothesis : no-failure state, y is zero mean and Q ~ Xn—4 

H2 hypothesis : failure state, y is not zero mean and Q is non-central 

The test is 

where 

accept HQ if Q < d 

accept H2 if Q > d 

Q = 

d = 

-4 = 

test statistic 

threshold for test size a 

degrees of freedom of Q 

(4.4) 

As the above test suggests, the threshold is set according to the alarm rate a 

set by the test designer. This was the approach taken by Parkinson and Axelrad 

in [25]. The test also assumes that the measurement error variance cr^ is known. 

The approach taken in [25] was to determine this parameter empirically for the 

particular receiver being used. The authors also considered a situation where a 

small bias associated with each measurement residual from a particular satellite 

was modelled and thus the reference distribution under the HQ hypothesis was 

non-central chi-square with a known non-centrality parameter. This approach is 
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somewhat less general and may lead to some loss of sensitivity in detecting biased 

measurements due to slowly varying satellite failures. 

The results given in [25] were based on closed form solutions for the alarm 

rate and the probability of missed detection based on different values for the non-

cent rality parameter. The results are promising in that a measurement error bias 

as small as 100m can be detected with an acceptably small miss rate (not given). 

In [26] which is a follow-up paper on the earlier work, the test statistic was scaled 

differently and the threshold for the test was arrived at using purely empirical 

methods. The new test statistic is defined in Eq. 4.5. 

The performance results in [26] are based on extensive Monte Carlo simulation 

at the San Francisco Airport (SFO). The 24-satellite three-plane configuration was 

sampled every 15 minutes for 24 hours at SFO. The geometry at Chicago was also 

examined and yielded similar results for the case of normal measurement errors. 

The normal measurement errors were modelled as being a small bias plus a small 

amount of additive noise. As a result, each error was specified with a uniform 

random variable with support from -5m to 5m plus a Gaussian random variable 

which was N(0,.16m^). (These parameters were chosen to correspond to a certain 

manufacturer's receiver which was Doppler aided.) Selective availability was not 

considered. 

It was found that none of the test statistics was larger than 8m so this value was 

chosen as the new threshold r^. The statistics chosen for the measurement errors 

induced a maximum radial error of 19m in the no-failure experiments. Similar 

experiments were also performed for each of the subsolutions which left out one of 

Q (4.5) 
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the visible satellites. In this case, no test statistics were larger than 10m and the 

largest radial error was 37m, but the average was less than 25m. This 10m value 

was taken as the subsolution threshold rj which is used for isolation purposes. (The 

radial position error which is the square root of the sum of squares of the errors in 

all three coordinate directions is the parameter of interest in [26] rather than the 

horizontal error considered in other works. This was the relevant parameter in the 

Gravity Probe B experiment at Stanford which requires a high degree of integrity 

in the navigation system which was the motivation for their work.) 

The detection and isolation procedure which was developed is as follows. 

1. Compute Q using all satellites in view (6 or more). 

2. If Q is less than the threshold rj, choose Hg and the integrity check is com­

plete. 

3. If Q is larger than the threshold, declare a failure is present. Then compute 

Qj for each subsolution leaving out one satellite at a time. There will be n of 

these solutions (i.e., j=l,n). 

4. If only one Qj is less than the subsolution threshold rj, then the failure is 

isolated as the satellite which is excluded from this subsolution. If two or 

more Qj are less than the subsolution threshold, then isolation is not possible. 

5. If detection and isolation are successful, use the solution which omits the 

failed satellite as the navigation solution. If only detection is possible, use the 

all-in-view solution but recognize that a degraded solution is being used. 

This algorithm was tested by adding different levels of bias to one of the normal 
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measurement errors to simulate a satellite failure and then by accumulating the 

resulting statistics. The detection and isolation results for four bias levels are given 

in Table 4.8. 

Table 4.8: Percent detection and isolation with r^^Sm and ri = 10m 

Bias (m) Detection Detection and isolation Detection but no isolation 
100.0 100.0 7Z2 27.8 
50.0 99.94 50.5 49.5 
37.5 98.70 34.2 64.5 
25.0 76.80 6.40 70.4 

Thus, it appears that the range residual squared statistic is a very powerful 

integrity monitoring method and if the actual measurement errors were similar to 

those modelled here, it appears that this method may satisfy the non-precision ap­

proach specification without SA and with good geometry. The radial error protec­

tion provided when detection and isolation is successful corresponds to the average 

radial error for a typical subsolution which was less than 25m for the measurement 

error statistics chosen. Bias errors as small as 75m were detected with an acceptably 

small miss rate. 

However these results appear to be overly optimistic for a number of reasons. 

First of all, the measurement error model which was chosen is unrealistic because 

the noise it generates is bounded by the uniform distribution used to generate 

the normal measurement bias. This may have been acceptable if the variance of 

the Gaussian noise had been larger. The variance of the sum of the two random 

variables used to generate the measurement error is 8.473m^ which is the variance 

of a uniform random variable plus the variance of the Gaussian random variable. 

This does not create the same distribution of noise as would be generated by a 
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Gaussian distribution with the same variance since the probability in the tails of 

the Gaussian distribution will be dramatically larger. This makes it difficult to 

predict results at higher noise levels. 

Secondly, it is possible that the samples of geometry which were used in the 

simulation did not contain any poor subsolution geometry. For the six-plane con­

figuration, the bad subsolution geometries may last as long as twenty minutes and 

thus it is rare that even spaced sampling will not yield poor geometries. However, in 

the three-plane configuration, the duration and distribution of the poor subsolution 

geometries is dramatically smaller [4]. Therefore, it is likely that no such geometries 

were contained in the simulation due to the 15 minute sampling interval. No details 

were given in the paper as to what the largest GDOP was for the geometries in the 

simulation. It turns out that detection of a bias error on a certain satellite during 

periods of poor subsolution is very difficult if the satellites are the only source of 

redundancy. It also appears that the three-plane configuration is less likely to be 

implemented so the geometry problems associated with the six-plane configuration 

may play a dominant role in the effectiveness of this method. (A more detailed 

discussion of this problem will be presented in section 4.10.) 

A problem with the test statistic in Eq. 4.5 is that the alarm rate in not 

constant when different numbers of satellites are used in the solution. This was 

not a problem in the first test statistic given in Eq. 4.3 since the test size was 

kept constant for different numbers of measurements by choosing the threshold 

from the reference distribution with the correct degrees of freedom. For the test 

statistic in Eq. 4.5, if one keeps the threshold constant, then the alarm rate changes 

dramatically for different dimensions of the measurement vector. This is easily 



www.manaraa.com

78 

shown with an example. Eq. 4.5 can be rewritten as shown in Eq. 4.6 below. 

t = 1 2_2 
n- 4^ *n-4 (4.6) 

Now suppose the threshold remains constant at t, and then calculate what the 

corresponding test size for different sizes of the measurement vector. The value for 

will be taken as the effective value used in [26] which is 8.473m^. The result of 

solving for in Eq. 4.6 is given in Eq. 4.7. 

t 
%n-4 = (4.7) 

Let aj be the test size according to the given threshold and the number of 

degrees of freedom of x^. 

For 6 satellites 

X2 
64 

8.473 ' 

15.106 

Prob[x2 > 15.106] = 0.0005 

Therefore 

For 7 satellites 

For 8 satellites 

For 9 satellites 

°:2 = .0005 

ar) = .00005 

= .000004 

05 < .000001 



www.manaraa.com

79 

When the threshold of 8m was set, none of the test statistics exceeded this value 

so it is not possible to calculate an alarm rate from the experimental data. In view 

of the above calculations, it is difficult to derive analytically what the alarm rate is 

since it is a function of the number of satellites being used. However, one could find 

an effective alarm rate by weighting each aj by the relative frequency of occurrence 

that the corresponding number of satellites are in view. Using the percentages given 

in Table 4.2 for the three plane configuration, the overall alarm rate is roughly .0001 

and is dominated by the six-satellite alarm rate. This is a rather small alarm rate 

compared with the methods presented earlier and this is desirable. This is probably 

close to the actual alarm rate for the test statistic given in Eq. 4.5. The alarm 

rate and protection level for different noise levels and the problems associated with 

poor detection geometry are still somewhat tentative and these concerns need to be 

addressed before this powerful method can be implemented. 

4.5. Comparing Maximum Separation and RRS 

This section contains a side-by-side analysis of the performance of two snapshot 

techniques using the same set of measurement errors for full SA (cr = 36.2m) and 

a single satellite failure. The results from a large simulation are presented and 

then a closer examination of the effects of the subsolution geometry is provided. 

Three examples were chosen which represent normal, borderline, and extremely 

poor subsolution geometry. 

The samples of geometry at Chicago were the same as those used in the max­

imum separation simulations [7] and the poor geometry is removed by leaving out 

geometries where any subsolution HDOP > 3.0. This criteria yielded 3414 exper-
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Table 4.9: Performance of maximum separation and RRS during good ge­
ometry 

Protection # points Max. Sep. RRS 
level (m) in Hi space # misses # misses 

100 3003 222 9 
125 2661 151 9 
150 2216 92 9 
175 1706 36 9 
200 1222 14 9 
225 852 7 9 
250 596 3 7 
275 393 2 4 
300 228 0 2 
325 124 0 2 
350 62 0 2 

iments with good geometry. The measurement errors correspond to full SA and 

a 500m bias was added to simulate a soft-failure. The thresholds were chosen to 

correspond to an alarm rate of .003 during good geometry. The results of the sim­

ulation are given in Table 4.9 and show how the number of misses decrease as the 

horizontal protection level is increased. 

The performance of the RRS statistic is superior in the smaller protection level 

range but the maximum separation statistic is better in the larger protection level 

range. The maximum separation statistic is more robust in that its performance 

improves dramatically as the protection level is increased. It is believed that the 

misses due to the RRS statistic in the 300m range are due to the effects of borderline 

subsolution geometry which was included in the simulation. Thus if the subsolution 

geometry is much better than the criteria used here (possibly HDOP < 2.0) it 

appears that the RRS statistic will provide sufficient performance at a much smaller 
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protection level. This is probably too optimistic since the poor subsolution geometry-

conditions can occur a significant portion of the time [4]. The effects of this type of 

geometry will now be examined more closely. 

For each of the different levels of poor subsolution geometry, the set of dilution 

of precision parameters are calculated for the all-in-view solution, and each of the 

subsolutions are given along with other statistics in Tables 4.10 , 4.11, and 4.12. 

A 500m error was placed in each satellite separately in addition to a different set 

of random measurement errors. Thus for seven satellites, there are seven experi­

ments with seven different realizations of the measurement error vector. The left 

hand vertical column of each table gives the numbering for each experiment and 

is the row number of the measurement vector which contains the bias error. The 

numbering of each solution from left to right corresponds to the satellite which was 

removed. The all-in-view solution is denoted as AIV. The north and west position 

error are given for each solution and are labelled as x and y solutions in the tables. 

The last column for each experiment gives the maximum separation, and the hori­

zontal error in the all-in-view solution labelled as M.S. and AIV Rad. respectively. 

Also appearing in this column are the numbers of the solutions between which the 

maximum separation lies and are labelled as i-j. The set of residuals formed using 

Eq. 4.3 for each subsolution and the all-in-view solution is also given in each table. 

The correct measurement error variance was used in the calculation of the residual 

statistic. The right most column of this set of statistics is used for detection and 

the rest are used for isolation. 

In the detection problem, the threshold for the maximum separation is 217m 

for an alarm rate of .003 and the threshold for the range residuals is 13.9 for the 
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same alarm rate and three degrees of freedom. For isolation purposes, the element 

with the smallest residual parameter in columns 1-7 of each row would be chosen as 

the good solution for each experiment. The smallest residual should lie along the 

main diagonal of this matrix. 

In the example with normal geometry, both methods successfully detected the 

bias error in all of the experiments. This is referred to as normal geometry because 

the set of HDOP's is fairly homogeneous and all are less than or equal to 1.6. Notice 

that in experiments 3,4,6, and 7 the horizontal error in the all-in-view solution is 

well below 200m and these would be false alarms for for such a protection level. 

Isolation was provided in all experiments except for experiment 5 where solution 2 

had a smaller RRS statistic than did solution 5. 

In the borderline geometry, solution 4 has an HDOP = 2.4 while all other 

solutions had an HDOP < 1.6. Even though this geometry satisfies the criteria that 

all subsolutions have an HDOP < 3.0, the RRS statistic fails to detect the 500m 

error in satellite 4. Detection and isolation is provided for all the other experiments 

though. Notice that the maximum separation usually occurred between the solution 

with the high HDOP and one of the low HDOP solutions. This is because the 

variance of this solution is larger than the other solutions and thus the solution is 

much larger than any of the other solutions. This leads to separations which are 

larger than in the previous example. Notice also that all the solutions in experiment 

4 are clustered fairly close together. The only reason why detection is possible is 

that the solution with poor geometry was small enough to still generate a large test 

statistic. 
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Table 4.10: Maximum Separation and RRS results for normal subsolution 
geometry, T=20.7 hours 

Solution 1 2 3 4 5 6 7 AIV 1 
1 

HDOP 1.25 1.60 1.08 L28 1.33 1.07 1.10 1.05 1 1 
PDOP 2.24 &19 Z67 1.99 L98 :L88 L82 
TDOF 1.27 1.09 1.07 1.64 0.98 &98 0.95 0.94 
GDOF 2.33 &48 Z43 3.14 2.24 2.20 2.11 2.05 i 

X solutions i M.S. AIV 
Exp.# y solutions i-J Rad. 

-16.3 -304. -151. -61.9 -0.9 -137. -116. -111. 341. 
1 29.3 138. 245. 180. 295. 232. 235. 207. 2-5 236. 

-352. 3.0 -298. -246. -442. -307. -287. -293. 498. 
2 -3.1 -6.0 -109. -141. -231. -101. -151. -114. 2-5 315. 

154. 9&4 7.4 6&4 167. 55.4 99.3 8&4 246. 
3 -203. -78.4 -5.0 -&A8 -18.5 -4&3 -147. -80.3 1-3 119. 

110. 5&3 141. -14.4 206. 163. 140. 133. 221. 
4 -51.5 -121. -102. -10.8 -36.3 -124. -136. -93.9 4-5 162. 

114. 490. 181. 254. 4.9 163. 181. 177. 545. 
5 284. 278. 161. 121. 2&0 179. 143. 164. 2-5 242. 

-40.6 -279. 10.9 -232. 126. 30.6 -22.2 -24^ 456. 
6 101. -21.0 38^ 189. 190. 17.4 55.0 71.3 2-5 75.5 

48.9 -167. 48.6 176. -7.8 -3.8 -16.5 5.5 344. 
7 -214. -195. -173. -229. -142. -124. 0.6 -132. 2-4 132. 

Exp.# Rang e residuals squared divided by cr^ 
1 5.8 51.7 44.2 68.8 50.8 47.9 68.8 73.5 
2 25.7 0.2 51.4 47.6 11.0 44.5 43.3 5L8 
3 89.6 122. 0.9 121. 110. 77.7 92.9 122. 
4 41.8 42.4 44.3 4.6 35.7 7.6 34.2 45.6 
5 29.2 2.4 59.5 48.7 4.6 50.6 56.8 59.7 
6 132. 95.8 110. 52.0 91.6 8.9 132. 134. 
7 98.0 95.1 77.5 J 57.3 112. 109. 0.1 112. 
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Table 4.11: Maximum Separation and RRS results for borderline subsolution 
geometry, T=30.3 hours 

Solution 1 2 3 4 5 6 7 AIV 
HDOP 1.50 1.26 1.56 2.41 1.35 1.27 1.29 1.21 
PDOP 2.60 2.60 2.93 6.34 2.55 2.44 2.45 &40 
TDOF L48 1.54 L83 3.46 L46 1.38 1.37 1.37 
GDOF 2.99 3.02 3.46 7.17 2.94 2.80 2.81 2.77 

x solutions M.S. AIV 

Exp.# y solutions i-j Rad. 
-2&5 -343. -311. -660. -420. -360. -384. -327. 696. Î 

1 57.9 117. 185. 349. 159. 199. 61.7 134. 1-4 353. 1 
-120. 1&5 -5&3 -379. 62.0 -45.5 -107. -55.9 502. i 

2 -64.1 -2.0 -8&6 128. -113. -101. -144. -80.6 4-5 98.1 1 
-11.6 6&5 -11.9 -&6 179. 38.4 119. 65.6 351. 

3 324. 302. 4&0 352. 273. 358. 371. 304. 3-7 311. 1 

384. 370. 350. 167. 368. 344. 317. 347. 251. 1 

4 -216. -182. -195. -90.4 212. -210. -244. -206. 1-4 403. I 

305. 119. 239. 463. -10.3 190. 169. 176. 530. 
5 -8L2 -109. 164. -234. 3.3 -70.5 -5&2 -48.5 4-5 182. ! 

-312. -70.0 -3.3 369. -138. -15.7 -9&9 -87.7 788. 
6 225. 186. 451. -139. 182. 26.6 161. 168. 1-4 189. j 

-238. -147. -170. 178. -52.7 -119. -3.6 -103. 469. 
7 -92.9 -174. -354. -309. -141. -95.4 -3.0 -127. 1-4 163. i 

Exp.# Rang e residuals squared divided Dy 0-2 

1 1.4 92.0 93.1 67.4 75.9 66.0 60.4 95.4 ! 

2 70.3 0.5 74.7 4&5 43.2 71.9 47^ 74.7 
3 56.2 624 5.2 61.1 33.5 43.1 3Z0 62.5 1 

4 10.3 4.6 11.7 3.7 10.8 11.6 2.1 11.8 
5 61.1 35.0 40.0 5A8 0.2 75.4 78.3_j 78.7 I 

6 83.1 132. 68.3 79.7 131. 0.1 136. 136. 
7 90.0 8&5 6&6 8&3 104. 102. 4.2 110. 
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Table 4.12: Maximum Separation and RRS results for poor subsolution ge­
ometry, T=20.025 hours 

Solution 1 2 3 4 r 5 6 7 1 AIV 
HDOP 1.27 1.27 25.3 1.30 1.21 1.26 1.22 ! 1.12 
PDOP 2.77 2.59 89/4 2.79 i 2.60 2.58 &59 1 2^2 
TDOF 1.66 1.47 47.1 1.67 ! 1.51 1.46 1.51 1.44 
GDOP &23 2.97 101. 125 3.00 2.97 3.00 2.90 

X solutions M.S. AIV 
Exp.# y solutions i-j Rad. 

70.8 272. 4156 260. 148. 176. 188. 189. 4112 
1 15.4 145. 482. 35.7 191. 119. 114. 114. 1-3 220. 

-198. 7&3 3295 -148. -149 -222. -199. -135. 3528 
2 -97.0 36.6 274. -31.3 -19.3 -6.5 -161. -44^ 3-6 142. 

327. 321. 578. 328. 326. 338. 330. 328. 258. 
3 19.7 17.8 43.8 2L0 25.5 16.5 2Z9 20.6 2-3 329. 

244. 192. 2034 52.4 174. 218. 115. 169. 1983 
4 -54.3 -109. 55.5 9.5 -128. -139. -216. -118. 3-4 205. 

13.2 -128. -9458 -148. -31.3 -254. -109. -116. 9521 
5 231. 118. -744. 158. -37.4 184. 137. 123. 1-3 169. 

-200. 

C
O

 

6286 -321. -280. -0.4 -243. -231. 6687 
6 91.1 12.7 670. 164. 158. -36.1 42.6 65.2 2-3 240. 

-102. -194. -5077 102. -42.9 -79.1 5&6 -50.2 5188 
7 -189. -200. -612. -312. -159. -133. 43.1 -145. 3-4 154. 

Exp.# Range residuals squared divided by cr^ i 
1 2.15 35.7 3&9 3^6 23.5 52.5 52.9 52.9 1 
2 102. 2.9 102. 116. 113. 95.7 56.5 116. 1 
3 0.3 0.2 0.2 0.3 0.2 0.1 0.3 0.3 
4 35.7 55.3 52.4 3.0 56.1 49.9 13.9 56.7 
5 65.2 126. 2&9 122. 0.7 74.0 125. 126. 
6 143. 99.5 95.7 114. 105. 0.8 145. 147. 
7 148. 106. 127. 66.1 157, 156. &5 158. 
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In the example of extremely poor subsolution geometry, solution 3 had m 

HDOP = 25.3 while all other solutions had an HDOP < 1.3. In this case the 

RRS statistic for experiment 3 has collapsed to almost zero while the maximum 

separation was still large enough to allow for detection. Isolation was provided for 

all experiments except experiment 3. Once again there is a clustering of solutions 

in experiment 3 but the solution with poor geometry is large enough to provide a 

large separation so the large variance is actually some help here. Notice that the 

error in solution 3 for this experiment is almost 600m for zero mean measurement 

errors. This example shows how the poor geometry affects the alarm rate when no 

failure is present. All of the maximum separations occur between the solution with 

bad geometry and generate very large statistics. 

These examples point out the problems which appear due to poor subsolution 

geometry. Even though the maximum separation technique makes the correct de­

cision in these experiments, it suffers from a high false alarm rate due to the poor 

geometry when no failure is present. The RRS statistic is somewhat different in that 

it gets less noisy during periods of poor subsolution geometry. Thus the alarm rate 

is not effected by this geometry but it will always fail to detect large errors in this 

situation. Clearly the satellite geometry plays a limiting role in the effectiveness of 

receiver autonomous integrity monitoring. 

4.6. An Approach for Testing the Probability of a Satellite Failure 

The Kalman filter approach presented by R.G. Brown and Hwang is based on 

the Magill parallel filter method and computes the posterior probabilities that one 

of the satellites has failed with an additive ramp type error [6], 9]. The underlying 
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theme of this approach is that if one of the measurements is being corrupted with 

an additive ramp type faihire and if a similar ramp is subtracted from the measure­

ments, then the residuals associated with such a filter will remain small. Hwang 

contributed a parameterization scheme which models all possible ramps according 

to their bias and slope and the result is that the number of filters required is equal 

to the number of satellite measurements being processed. 

The hypothesis associated with each filter is whether a non-trivial ramp failure 

is present on a specific measurement and also that all the other measurements are 

unbiased. This is still a binary hypothesis test where the null hypothesis is that no 

satellites have failed and the alternative hypothesis is a composite of the hypotheses 

that one of the satellites has failed and all the others have not. The parameter space 

for each source hypothesis is divided into two regions. A null region close to the 

origin of each satellite space represents the no-failure region. The remaining region 

in each space represents the combinations of bias of slope that would be considered 

a failure. The posterior probability associated with each hypothesis is updated 

recursively with the ratio of likelihood functions over these regions. 

When this approach is implemented, the statistics used for failure detection are 

the posterior probabilities. If no failure is present then the probabihty associated 

with the null hypothesis should be close to unity while the probabilities for each 

source hypothesis should be close to zero. If a single failure is present, the source 

hypothesis associated with the failed satellite will converge to unity while all the 

other probabilities should converge toward zero as more and more measurements 

are processed. 

The time required for the probabilities to adequately converge depends on a 
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number of factors. First a threshold must be chosen which corresponds to an ac­

ceptable convergence level for the failure hypotheses and the no-failure hypothesis. 

The severity of the failure also dictates how fast the probabilities will converge. If 

the aircraft is in a modest acceleration environment then this will tend to obscure 

the failure due to the increased noise in the residuals. Selective availability would 

also cause problems with this scheme since the bias and slope of this process may be 

mistaken as a slow satellite clock failure and may cause a false alarm. Poor subsolu­

tion geometry may lead to problems (although this has not been investigated) since 

the failures on certain satellites would not be observable in the residuals during 

these periods and would probably lead to a missed detection. 

It should be noted that identification is directly provided for in this approach 

since the source hypothesis with the largest probability would be considered the 

failed satellite if the alarm was raised. Another unique quahty of this scheme is that 

the redundancy does not necessarily have to be in the form of redundant satellite 

measurements even though it will handle this situation. It will actually work in 

some cases with only four satellites. There is some redundancy built directly into 

the Kalman filter model with regard to the vehicle dynamics and the clock stability. 

In some cases explored by the Hwang [9], additional acceleration states were added 

to the filter model to increase the effectiveness of the scheme during acceleration 

environments as would be experienced during a non-precision approach. 

The results of this study were tabulated as to the time required for detection 

and isolation of different size failures during different acceleration environments and 

with different sensor information such as baro-altimeter and Doppler aiding. Some 

results were also given where the filter included the extra acceleration states. These 
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Table 4.13: Detection results using posterior probabilities 

Flight Model Time to Time to 
environment dynamics Measurements detection isolation 

En route low 4 sats. 14s 20s 
En route low 4 sats. & baro. 14s 15s 
En route low 4 sats. & low 

quality Doppler 
14s 15s 

En route low 4 sats. & high 
quality Doppler 

2s 3s 

NP approach high 4 sats. 25s none 
NP approach high 4 sats. & baro. 15s 28s 
NP approach high, with 

acc. states 
4 sats. 25s no 

isolation 
NP approach high, with 

acc. states 
4 sats. & baro. 13s 32s 

cases are summarized in Table 4.13 for a 3m/s ramp type failure. Results of other 

failures modes were also given in 19]. 

These results show the effectiveness of this approach in detecting and isolating 

small satellite failures. In the cases presented, the error on the pseudorange had 

not even reached 100m before detection was successful and thus the induced error 

in the horizontal plane was probably small (though this result was not given). It is 

clear that the redundant measurement information was helpful for identification of 

the errant satellite. 

There are a few drawbacks to this approach however. The effects of selective 

availability were not considered and this noise source would reduce the effectiveness 

of the scheme considerably. The scheme is really based in the measurement space 

and the result of the hypothesis test does not lead to an inference about the param­

eter of interest which is the horizontal position error. The scheme would probably 
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pre-detect the failure before the induced error in the position states is large and this 

is desirable but may lead to a higher false alarm rate with SA or high dynamics. 

Since the decision is made according to posterior probabilities it is difficult to gen­

erate performance measures such as the alarm rate and the detection probability 

with this approach. Some of these concerns were addressed in a follow up work 

which will now be discussed. 

4.7. A Likelihood Ratio Approach Using Parallel Filters 

In an update of the work presented above an attempt was made to form a 

closer connection between the test statistic and the parameter of interest which is 

the horizontal error. The test statistic given by McBurney and R.G. Brown [23] 

is formed using a set of statistics obtained over a 10s window and in this way the 

test is brought into the framework of the non-precision approach requirements of 

protecting against an excessive horizontal error within a 10s reaction time. 

The border between the null and failure regions of each bias and slope pa­

rameter space is defined so that points inside the null region would not induce a 

horizontal error larger than the specified protection level. The connection between 

the range error and the induced horizontal error is through a typical value of HDOP 

= 1.5. Regretfully, this is a weak connection in an absolute sense. Rather, it is a 

good statistical bridge if one considers an ensemble of pseudorange errors and the 

corresponding induced horizontal errors. Thus the null space is more forgiving here 

than it was in the earlier approach in that sizable range errors are not considered 

to be failures. The parameter space is discretized to a reasonably small number 

of points and each point corresponds to a filter which subtracts a particular ramp 
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function from one of the range measurements. (Doppler measurements were also 

considered so the slope for each point was subtracted from these measurements.) 

The HQ hypothesis for this test is that the horizontal error is less than the 

protection level and is represented with points from the null region of each parameter 

space. An additional point is added which assumes all measurements are unbiased 

and is referred to as the null filter. The hypothesis, where the horizontal error 

is larger than the horizontal protection level, is represented with the points outside 

the null regions from each parameter space. There are two possible decisions which 

could be made. The DQ decision supports HQ and likewise the decision supports 

Hj. The decision rule is formulated to minimize the average cost associated with 

each decision, given the data, where there is no cost associated with a correct 

decision. The test is given in Eq. 4.8 where the test statistic is a ratio of exponentials 

each of which has an exponent which is a running sum of weighted residuals squared 

(RSWRS) associated with a specific filter. 

Choose if Q > AQ (4.8) 

where 

Q 

5 -^(RSWRS)I 
N, 

^(RSWRS)^^ll + e 

RSWRS 
k=l 
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y}^ = measurement less a particular ramp function 

Vk = HkP^HjJ' + Rk 

P(Ho) nNi C, 
^0 ' P(Hi) nNo + 1 Cm 

P(Hq) = prior probability of each point in null space 

P(H2 ) = prior probabihty of each point in failure space 

Nq = number of points in each null space 

Nj = number of points in each failure space 

N = number of steps in window 

n = number of satellites used in the solution 

The scheme was tested via Monte Carlo simulation. An optimistic Kalman 

filter model was implemented which took advantage of Doppler measurements, the 

stability of a good crystal clock (with parameters given in Table 3.1), a mild accel­

eration environment (A^ = 1.0 m^/s^) and a measurement model for SA which was 

the same as the simulated SA process. A six-in-view solution with good geometry 

was used. The SA noise generated consisted of the damped cosine process (cr = 

10.2m) given in case 1 of the selective availability study in Chapter 3 plus another 

similar process which was a quasi-bias (cr = 31.7m). The time constants of these 

processes were 3.5 and 71 minutes respectively. The standard deviation of the white 

measurement noise for the pseudorange and the range rate were 15m and 2m/s re­

spectively. The dimension of the augmented state vector was 32 (= 8 + 6 x 4) as a 

result of accounting for the SA processes. 

At the time this research was performed there was some hope that the non-

precision approach specification could be relaxed to 200m and this was the protec­
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tion level used in the hypothesis test. The null region had boundaries for the bias at 

± 133m and for the slope at ± 133/5 m/s. A series of single satellite failures were 

added to the measurements and the sensitivity of the test statistic to the different 

errors was analyzed. For presentation purposes it is convenient to tabulate only the 

dominant terms from the HQ and regions which are the smallest RSWRS from 

these regions. The approximate decision rule is given below. 

Choose if Q > Ag 

where 

X 

Q = e2 

X = RSWRS^.^ HQ - RSWRS^.^ 

A reasonable value for AQ = 39.5 and is obtained when n=10, NQ=8, N]^=32, 

P(H2^) = 10^®, P(HQ)=1-P(H]^), The critical value for x is then 7.3. 

Two types of test were performed. Single window test results are given in Table 4.14 

and multiple window test results are given in Table 4.15. 

In exps. 1-3 the bias was placed at the boundary of the null region and also 

at ± 10% of this value and the action of the test statistic is as anticipated. Exps. 

4 and 5 test the extremes of no error and a large bias error and a strong decision 

is made in both situations. Exp. 10 and 11 test showed how the test statistic grew 

as the failure size increased. Exp. 12 analyzes the effect on the test statistic as the 

failure is moved in and out of the null region. All these results are encouraging. 

This method still does not address the issues of the alarm rate or the detection 

probability. Regrettably, the induced horizontal error was not retained in the anal­

ysis and the results were not checked for correctness with respect to this parameter. 
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Table 4.14: Single window simulation results 

Exp.# Error 
introduced 

X from three experiments 

1 133u(t) -10 ! 10 4 
2 î 146u(t) 54 73 66 
3 120u(t) -52 1 -18 -28 
4 ! 0 -152 1 -171 -163 
5 222u(t) 423 442 436 
6 22tu(t) 139 i 165 156 
7 (133+8.9t)u(t) 212 230 224 
8 89tu(t-5) 740 800 780 

u(t)=unit step function 

Table 4.15: Multiple decision window results 

Exp.# Error X from three experiments 
introduced Window 1 Window 2 Window 3 Window 4 

10 8.9tu(t) -72 57 512 1020 
-96 79 514 962 
-92 62 517 986 

11 -5.3tu(t) -126 11 275 717 
-129 -20 64 384 
-145 -2.9 189 409 

12 (200-10t)u(t) 236 -173 -25 146 
251 -130 -29 163 
269 -154 -20 170 
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The dimensionality of this approach would make it difficult to implement. However 

it did show that the parallel filter approach can be molded into a sequential hy­

pothesis test based on a finite window of data where the results are related to the 

error in the horizontal plane. 

4.8. A Chi-square Test Using Kalman Filter Residuals 

This approach is similar to the one presented above in that the test statistic is 

a running sum of weighted residuals squared. This is a simplified version where the 

statistics are accumulated for only one filter based on the hypothesis that no failure 

is present. Under this assumption the residual vector is unbiased and the squared 

residual vector normalized by its covariance is a chi-square random variable with n 

degrees of freedom [12]. Using the innovations properties of the residuals sequence, 

the sum of a sequence of these chi-square variables is another chi-square variable 

where the degrees of freedom of the sum is simply the sum of the degrees of freedom 

from each step. The test has the following null and alternative hypotheses. 

HQ hypothesis : no-failure state, is a zero mean innovations sequence 

hypothesis : failure state, is not zero mean 

Under these hypotheses the size a test is [24] : 

Choose H2 if Q > AQ 

Choose HQ if Q < AQ 

where 

N 
Q = S "k 

k=l 
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d = degrees of freedom of Q 

= nN 

Ao = XdK*) 

a = Prob(xj > Aq) 

This test is based in the measurement domain and the inference made about the 

test result is whether or not a satellite failure is present. This is not the parameter 

of interest to the user since a sizable measurement error may be tolerated in some 

cases if it does not couple into a horizontal error larger than the protection level. 

The test designer does have the ability to set the alarm rate to a desirable level. 

This alarm rate is conditioned on the reference distribution under the HQ hypothesis 

which is based on zero mean residual vectors rather than on the horizontal error as 

defined in section 3.4.4. It is possible to set the alarm rate according to a specified 

horizontal protection level by simulating an ensemble of single satellite failures along 

with the usual measurement noise and selective availability. The test size would be 

set so there was no misses at the desired protection level. This is a non-trivial task 

since the satellite geometry and the filter parameters have a large influence on the 

estimation error. Results of such an analysis will be presented in a later section. 

4.9. Need for Redundancy in Integrity Monitoring 

The effectiveness of the above approach and all the others presented is based 

upon the amount of redundancy mainly in the measurement information but also to 

a large degree in the filter model. This redundancy is required so that a measure­

ment error due to faulted satellite will be observable in the measurement residuals. 
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The importance of this statement cannot be overstated. Having more independent 

measurements than unknowns is the simplest source of redundancy. However, the 

process model of the parameter vector will also provide a certain amount of redun­

dancy. For example, a highly stable clock model will be manifested in small filter 

gains for the clock states and thus the filter will not allow the clock estimates to be 

corrupted quickly when a failure appears in the measurements. Also, a filter which 

assumes a very mild acceleration environment will not allow the state estimates to 

change too quickly and thus provides a certain amount of redundant information. 

The filter designer must be cautious not to over stabihze the filter model. Such a 

filter would yield biased residuals which will mimic a failure during a period of large 

unmodelled acceleration. It is not uncommon for crystal oscillators to experience 

sudden frequency shifts and the state estimates may diverge if the clock model is 

too solid. These are common filter divergence problems that must be prevented 

when designing a reliable failure detection algorithm with a small false alarm rate. 

4.10. Effects of Poor Subsolution Geometry 

As mentioned earlier, there must be more independent measurement equations 

than there are unknowns for the extra measurements to provide the needed redun­

dancy. This statement is equivalent to the requirement than for n satellites in view, 

each subsolution of size n-1 must have small GDOP. This is the same criteria used 

by A. Brown 14] for determining the percent of the time that failure detection is 

possible for a given satellite constellation. 

The reason why detection of an error on certain satellites is not possible will 

be given in the form of a verbal proof. Start with a situation where there are 
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four measurements and four unknowns. If the measurement equations are linearly 

independent, the matrix G will be non-singular. A unique solution will exist and the 

residuals will be zero since the solution provides an exact fit the measurements. If 

one of the measurements contains a large error, this is reflected in a large solution 

error but the error is not observable in the residuals. When the measurement 

equations are not linearly independent, the G matrix is singular and the GDOP is 

infinite. As the measurement matrix approaches the singular condition, the solution 

error gets larger and noisier but the residuals are still zero. 

Suppose that more than four satellites are in view. This results in an overde-

termined system of equations. If the GDOP is small in each solution of size n-1, 

then no solution can be found which fits all equations exactly and the result is a 

set of non-zero residuals. Thus large errors will be observable in large residuals. 

Now consider a situation where the all-in-view solution has small GDOP but 

one of the subsolutions of size n-1 has large GDOP (say that it is infinity). This 

subsolution contains all the satellites except one and this subset of equations is 

ill-conditioned, since there are less than four linearly independent equations as evi­

denced by the large GDOP. If the remaining satellite is added to this subset, then 

it can add only one independent equation and the result is that the all-in-view 

solution will contain only four independent measurements. Even though there are 

more than four equations, the all-in-view solution will provide an exact fit to the 

measurement which was just added to since it provides a unique solution. An error 

in this satellite maps directly into the nullity of the solution and will not be ob­

servable in the residuals. However, the other satellite measurements are redundant 

since the GDOP is small when each of these is removed. These measurements do 
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not map into the nullity of the solution and thus large errors on these satellites are 

observable in the residuals. 

The satellite which, when brought into the solution, removes the ill-conditioning 

can be thought of as a key satellite since it is needed for navigation purposes to 

provide a solution with small GDOP. Thus the difference between the navigation and 

integrity requirements on the satellite geometry do not appear to be vastly different. 

The satellite for which failure detection is difficult is the satellite which must be in 

the solution to provide good navigation, whereas each of the other satellites can be 

removed with causing a damaging increase in the GDOP. The length of time a key 

satellite is present (starting when the worst subsolution GDOP crosses a certain 

level and lasting until it relaxes back to the same value) is referred to as a poor 

subsolution geometry (PSG) window and may last as long as 15-20 minutes with 

the 24 satellite six-plane configuration, and it occurs six percent of time during one 

day. 

The presence of a key satellite in a solution has different effects on the various 

integrity monitoring schemes which have been presented. In the residual based 

approaches, an error on a key satellite is not observable in the all-in-view residuals. 

This can be seen in Tables 4.11 and 4.12 where the RRS test statistic is small for 

the experiments where the error was placed in the key satellite. In the maximum 

separation approach (and the range comparison method) the solution which does 

not use the key satellite will have a large variance associated with the solution errors 

and will lead to a high false alarm rate due to even small range errors. This can 

also be seen in Tables 4.11 and 4.12 in the form of very large solution errors in the 

subsolutions which do not use the key satellite. 
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The presence of a key satellite also has a similar effect on the Kalman filter 

measurement residuals. This can be illustrated by noting the effects of a step 

function error on the measurement residuals. In Fig. 4.1 the error was placed 

on a non-key satellite and it can be seen that the error remains observable after 

initiating the step. In Fig. 4.2 the error was place in a key satellite and the receiver 

clock was assumed to have good stability. The redundancy provided in the filter 

model was enough so that the error in the key satellite remained observable for at 

least a few minutes. Finally, the filter model was altered and a receiver clock with 

modest stability was assumed. When the error was placed on a key satellite, it only 

remained observable for a short time as seen in Fig. 4.3. The fact that the error 

was observable for a very brief time is of no consequence. If the key satellite error 

had been a slowly increasing function, the error would not have been observable at 

all in this filter whereas it would have been if the filter had assumed good clock 

stability. Errors placed on non-key satellites produced residuals like those shown in 

Fig. 4.1 regardless of the clock model. 

4.11. The Detection Filter as a Means for Clock Coasting 

If integrity monitoring is to be provided at all times, some provision must be 

made to detect errors in the key satellites. As seen in the previous section, the 

assumptions made in the filter model about the clock stabihty can provide the 

minimum redundancy to make failures in key satellites observable at least for a 

short period, possibly a few minutes. However an extremely stable receiver clock 

would be necessary to provide this type of redundancy for the duration of the poor 

subsolution geometry which can last 15 to 20 minutes. It appears that some other 
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means is required to force the filter to lean on the clock as a stable reference during 

these periods. One approach which can be taken is to generate a parallel filter 

that has more clock stability than the navigation filter. This filter is referred to as 

the detection filter and the additional information can be brought into this filter in 

either an implicit or an explicit fashion. 

The idea of relying on the receiver clock is also common in the navigation 

context. If only three satellites are available, it is possible to obtain a solution by 

using the previous estimates of the clock parameters to remove the clock bias from 

the pseudorange measurements and thus reduce the number of unknowns in the 

problem to three. This practice is sometimes referred to as clock coasting. 

In the context of integrity monitoring, clock coasting can be implemented in 

at least two different ways as mentioned above. Prior information about the clock 

stability can be exploited in an implicit fashion by making strong assumptions about 

the clock stability in the detection filter. This would involve using a different clock 

model from the one used in the navigation filter and this model would not allow 

the filter to change the estimate of the clock bias by a large amount over a 15 to 

20 minute span. Clearly this would be a suboptimal model but this is acceptable 

since this filter is not used for navigation purposes. 

A filter which changes modes at the start of a PSG window would provide 

explicit redundancy by coasting the filter on the prior estimates of the clock param­

eters as mentioned above. This corresponds to having a colored noise process in the 

measurements where the estimation error of this process is correlated with the esti­

mation error of the parameters to be estimated. Such correlation can be accounted 

for by using a consider filter [1], [11] where the effects of the colored noise process 
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are considered without actually updating the estimates of this process. The filter 

equations for the consider filter are given in Appendix B. 

Both the implicit and explicit clock coasting schemes were tested by Monte 

Carlo simulation to analyze their ability to detect slowly varying errors in a key 

satellite and the results were presented by McBurney and R.G. Brown at the Na­

tional Meeting of the ION in 1988 [22]. The truth model and the navigation filter 

both assumed the receiver clock had good stability with parameters described in 

Table 3.1. The detection filter assumed a very stable clock model where the h_9 

term is set to zero and the hg term was chosen to be the value given in Table 3.1 

for the clock with modest stability. This matches the long term stability of this 

simple model closer to the long term stability of the truth model [29]. The explicit 

filter assumed the same model used in the implicit mode and only switched into the 

clock coasting mode when the worst subsolution HDOP > 3.0. 

The selective availability process was the same as that described in the simu­

lation of the parallel filter approach except that both filters accounted for the SA 

noise in a casual manner by increasing the terms in the R matrix. The acceleration 

environment was somewhat noisier than before with A^ = 4m^/s^. The true white 

measurement noise had a standard deviation of 10m and the measurement noise 

variance assumed in the filter was 1200m^ as a result of the casual SA modelling. 

Four different PSG windows in Chicago were analyzed where the worst GDOP 

among subsolutions peaked as high as 100.0 and the length of time the worst HDOP 

among subsolutions was larger than 3.0 lasted between 13.5 and 19.5 minutes. The 

test statistic used was the sum of chi-square statistics from the detection filter 

residuals over a ten second window. The test size was set conservatively to yield 
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a small alarm rate during the poor subsolution geometry. From the no-failure 

experiments during these four windows, the largest test statistic for both the implicit 

and explicit runs occurred at a test size of 5 x 10~®. If the test size had been set at 

this value, then one alarm out of 1368 windows would have occurred. Any smaller 

test size would yield no alarms for this sample space. (At the time this research 

was performed, the incorrect degrees of freedom was used in setting the threshold. 

Also, the SA modelling caused the statistics to be over-normalized. The scale 

factor which properly normalizes the threshold has been determined subsequently, 

using a statistical procedure referred to as the method of moments, as described in 

section 5.7. The test size given above and below is compensated for according to 

the estimated scale factor of c = .33 and for d = 7.1.) 

Next, a series of ramp failures with slopes of .5, 1.0, and 2.0 m/s were placed 

in a key satellite at repeated times inside the PSG windows. The maximum moving 

average horizontal error over two samples from the navigation filter was used as 

the truth in the simulation. For a test size of 1 x lO""^'^, both the implicit and the 

explicit clock coasting schemes experienced no misses for a protection of 110m. This 

implies that all errors in the 110 to 300m range were also detected with no misses. 

It was common in the simulation for the alarm to be raised as many as three to 

four windows prior to the occurrence of the radial error exceeding the protection 

level. This means we may be able to detect a satellite failure before it introduces 

a large error. We are assured that the alarm will be raised when the radial error 

does exceed the protection level. 

This approach is not without fault though. The biggest problem arises in the 

clock coasting mechanism and how this would be implemented in a real life situation. 



www.manaraa.com

107 

The detection filter can be designed independently from the navigation filter but 

the inference made about the integrity check should be whether the horizontal error 

in the navigation filter is excessive. If the suboptimality in the detection filter clock 

model leads to divergence in this filter (because of the highly stabilized clock model), 

the result will be a false alarm with reference to the navigation filter, and clearly 

this situation must be avoided. It appears that most of the time the detection 

filter would not be required since the abundance of satellites in the 24 satellite 

configuration will provide enough redundancy almost 95 percent of the time. In 

this case, the test statistic can be formed using the navigation filter residuals and 

the correlation between the test and navigation error is improved. 

The times when the detection filter is required is predictable in the GPS receiver 

as a result of the subsolution GDOP calculations. As a poor subsolution geometry 

window is entered, the receiver may start up the parallel detection filter which has 

the redundancy to detect an error on the key satellite. (Errors on non-key satellites 

can be detected at all times without the need for the detection filter.) This mode 

switching may be preferable to a detection filter which is in continuous operation 

since the detection filter may be prone to divergence more than the navigation 

filter. As a last resort, other aiding information can be exploited during these times 

if clock coasting is not possible. 

4.12. Retrospect on the Alarm Rate 

After performing a number of simulations when a failure has been added to the 

measurement errors, it is possible to have a pessimistic view of the unconditional 

alarm rate which is calculated from such a simulation. In the Kalman filter simu­
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lations, as the ramp error built up to value which triggered the alarm, the induced 

horizontal error was still small with respect to a protection level, of say 200m, for 

possibly a few windows. Thus many false alarms were experienced with regard to 

the horizontal protection criteria. In the snapshot simulations, a large bias was 

needed to induce a significant number of horizontal errors which were larger than 

a specified protection level. However, in this case the alarm was triggered on al­

most every experiment. This gives the analyst the impression that the false alarm 

probability is too large since in a major portion of these experiments the horizontal 

protection was not exceeded. A closer look at the unconditional alarm probability 

will show that this behavior will not be problematic operationally. 

Using the law of total probability, the unconditional alarm probability can be 

expressed in terms of false alarm probability and the detection probability as shown 

below. 

Prob(alarm) = Prob(alarm|no-failure) x Prob(no-failure) (4.9) 

+ Prob(alarm|failure) x Prob(failure) 

In the analysis of the detection schemes, most of the simulations were performed 

with an intentional bias (or ramp) added to the measurement noise for one satellite. 

This, of course, is expected to be a rare situation in real life, but the simulations had 

to be done this way in order to test the effectiveness of the detection scheme. The 

usual situation is the case where there is no bias in the pseudorange measurement. 

Such cases induce navigation errors outside the specified protection level only rarely, 

so these simulations were only run to set the threshold in accordance with a specified 

false alarm rate. It can be seen from Eq. 4.9 that the unconditional alarm probability 
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is approximately equal to the false alarm probability if the probability of failure is 

very small, say of the order of 10~"^ which is expected in the GPS case. 

With this perspective, it can be seen that the high false alarm rate obtained 

from simulations of a failure situation is tolerable since these events are not rep­

resentative of the "typical" situation. It is comforting to know that the test is 

sensitive to the presence of such a signal and that it will usually be detected before 

it induces a large horizontal error. The more dangerous situation is a missed detec­

tion so we would like to have a test which is sensitive to the presence of an unusual 

measurement error. Thus, if the false alarm rate can be set to an acceptably small 

level, we are assured that the unconditional alarm rate cannot be much larger than 

this value. 
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5. THE CENSORED KALMAN FILTER AS A MEANS FOR RAIM 

5.1. Overview and Assumptions 

A qualitative description of the censored Kalman filter as a means for integrity 

monitoring was discussed in Chapter 2. A more detailed analysis will now be pre­

sented. The censored Kalman filter is an algorithm for computing the residuals 

and the corresponding state estimates from the usual Kalman filter estimates when 

a deterministic measurement sequence is removed from the original measurement 

sequence. The integrity check which accompanies this algorithm is a two stage test. 

A statistical analysis is first performed on a set of measurement residuals to test the 

null hypothesis that the residuals are samples of an innovations process. If the test 

supports the alternative hypothesis that the residuals are biased, then one of the 

measurement sources is censored in a manner which attempts to force the residuals 

to support the null hypothesis. 

The second step of the test is to compute the censored state estimates based 

on the censored residuals. If the distance between the censored and the un-censored 

state estimates is large with respect to the covariance properties of these parameters, 

the inference is that the estimation error associated with the original state estimate 

is out of specification and an alarm situation is present. The scheme provides for 

identification of the faulty measurement source and the removal of this source should 
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return the system to the normal no-failure state. 

There are a few underlying assumptions upon which this scheme is based. First 

of all, redundant measurement information is required so that system failures will 

be observable in the measurements residuals. Also, the redundancy must appear in 

a manner so that a good solution exists for each subset of measurements of size one 

less than the number of sources. This requires the dilution of precision parameters 

for all such subsolutions to be small and homogeneous. A large measurement error 

may be tolerated for a brief period of time if it does not lead to a censored state 

estimate which is "far" from the original estimate. Thus, pre-detection of a possibly 

faulty measurement source is provided for, but it is not considered to have failed 

unless it has a significant effect on the distance between the two estimates. 

A single failure assumption is made when determining which measurement will 

be censored. If the statistics of the errant measurement source are significantly 

larger than the statistics of the other sources, the censored filter will effectively 

"zero-out" this measurement source and the censored estimate will stay close to 

the truth while the original estimate will diverge. In this case a strong decision 

will be made. Conversely, if the measurement errors on many sources are larger 

than is hypothesized in the filter, the failure will be hidden among the other errors 

and the censoring performance is weakened. Even if the wrong source is censored, 

the resulting censored estimate should still be "far" from the un-censored estimate. 

Thus, large error immersed in large unmodelled noise may still be detected even 

though the censored estimate will not track the truth as well as in the first case. 

A missed identification may occur in this situation even though failure detection 

is still provided. Further testing may be required to double-check which source 
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has failed when the subsolution dilution of precision parameters are somewhat non-

homogenous. 

5.2. The Two Confidence Region Overlap Test 

The primary concern of integrity monitoring is to maintain a bound on the 

estimation error in the horizontal plane due to an out-of-tolerance satellite signal. 

The previous integrity monitoring schemes, which are based on the statistics of 

the measurement residuals, suffer from providing only a weak inference about the 

horizontal estimation error. The two confidence region overlap test, however, places 

the integrity assessment directly in the horizontal plane and provides an analytic 

bound on the protection which is provided by the test. 

The confidence region is an interval estimate, with a specified confidence, of the 

true parameter. The confidence region is centered at the estimate of this parameter 

and provides an understanding of the how large the estimation error can be, for the 

specified confidence, when the estimate is unbiased. However, if a failure is present 

the estimate and the resulting confidence region will be biased. The induced bias in 

the estimate is unknown but should be reflected in large measurement residuals (if 

the redundancy requirements are met). If the bias in the residuals can be removed 

by censoring unusual measurement residuals, then the corresponding censored state 

estimate should move away from the un-censored estimate. 

The distance between the censored and un-censored estimates should provide 

an indication of the estimation error in the un-censored estimate. An upper bound 

on the estimation error can be generated where the confidence regions overlap at 

only one point and the inference made when the confidence regions do not overlap 
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is that the estimation error may be as large as this bound. The test is designed so 

that the confidence regions will become disjoint before the estimation error exceeds 

this value. 

This failure detection scheme is similar to the one presented by Kerr [16] which 

also uses a two confidence region overlap test. His approach is different in that one 

of the confidence regions is centered about the prior mean, and this parameter as 

well as the confidence region is based on the propagation of prior information rather 

than on the measurements. The other confidence region is centered at the Kalman 

filter estimate which utilizes the measurement information and uses the posterior 

error covariance matrix to form the confidence region. Thus the two ellipsoids are 

of different sizes and the overlap test is somewhat complicated. In the censored 

approach, both estimates have the same covariance properties (under different as­

sumptions about the residuals), and as a result the overlap test is simplified. 

The confidence region is based on the solid ellipsoidal hypervolume of x values 

satisfying the inequality given below, and this region contains probability 1-a [12]. 

This fact may be used to construct a 100(l-a)% confidence region about the 

estimate of /i. The confidence region has the interpretation that if the test were 

l(x-/x) < Xd(«) 

where 

fx = E[x] 

P = Var[x] 

d = degrees of freedom of 
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repeated a number of times, the true parameter pL would be contained in 100(1-q)% 

of the confidence regions centered about each estimate of /x. In the bivariate case, 

the confidence region contains the values of x,y satisfying the inequality in Eq. 5.1. 

X — X 

o-x 
- 2 p  

X — X y -  y 

where 

o-x 7 V (^y 7 

= 
Pl l  

II b
 P22  

P12 9 = P12 
(JxCy 

< X 2 ( * )  (5.1) 

(The subscript refers to the element in the matrix or vector and the time subscript 

is removed to improve the readability.) 

The confidence regions associated with two estimates of a bivariate random 

variable, each having the same covariance properties, will overlap if the midpoint 

between the estimates is contained in both confidence regions. Thus, the confidence 

regions about the censored estimate and the un-censored estimate will overlap if 

the inequality in Eq. 5.2 is satisfied. The parameters are obtained from the 8-state 

filter model described in Section 3.3. 

l - , 2  
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< X2(«) (5.2) 

X = north position error 

y = west position error 

X = (x)i 
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For this test it is possible to obtain bounds on the estimation error where the 

confidence regions contain only one common point. The worst situation is when the 

major axes of the two ellipses are co-linear. As shown in Fig. 5.1, if a circle is drawn 

about each horizontal estimate whose radius, a, is half the major axis length, then 

the true position can be 3a units (at p) from the Kalman filter estimate while there 

is still overlap on the boundaries of the ellipses. This corresponds to a situation 

where (Xx and cry are replaced with (Tm = max{ (Tx,fy }. If p  is also set to zero, 

the single point overlap occurs when Eq. 5.3 is satisfied. 

2 
(5.3) 

The protection level at p is given in Eq. 5.4. 

ro = 3CTmyÇ|M (5.4) 

A similar argument can be made to obtain the protection level when the minor 

axes of the ellipses are co-linear. Using the smallest of the position variances o-g = 

min{ crx,(Ty } and p=0, the protection level in this case is given in Eq. 5.5. 
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Figure 5.1: Intersection of confidence regions at one point 

This represents the most optimistic protection level whereas the previous for­

mula represents the most pessimistic one. In other words, we may be able to protect 

against errors as small as t)ut we are assured we will detect errors larger 

than ^<TTn.\JX^i^) (with a specified confidence level). For a given test size, the pro­

tection level is dependent on the accuracy of the navigation solution through ctx 

and (Ty . If the accuracy in either direction is the same, these two protection levels 

are equal. As an example of the protection verses the position accuracy, let a—.001, 

(%2(ct) = 13.8) and as a result, rg^lhlu. 

5.3. The Censoring Algorithm 

The objective of the censoring algorithm is to isolate unusual measurement 

residuals with respect to the parameters of their distribution computed in the 

Kalman filter. The censoring algorithm which is presented is not unique or op­

timal and one could perform the censoring in many different ways. Rather, it is 

an ad hoc algorithm which was developed in response to analysis of the effects of a 

single failure in a sequence of vector measurement residuals. 
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Assume that N measurement residual vectors from the un-censored filter have 

been stored in the matrix form shown in Fig. 5.2. 

1̂ 2 . . . Î/N 

Figure 5.2: Residual matrix to be used in censoring algorithm 

The residuals which are to be analyzed are the censored residuals and these residuals 

account for the presence of a bias /io in the state estimate N steps prior to the current 

time (see Appendix C). Thus at the beginning of the analysis, the corresponding 

censored residual matrix is calculated from the un-censored residual matrix using 

Eq. 5.6. 

^ ^ ^k/^0 k = l,N (5.6) 

The end result of the censoring algorithm is a set of N censoring vectors {s^} 

which attempt to remove the bias from the censored residual matrix. Under the 

single failure assumption, only one element in each S|^ vector can be non-zero. The 

identity of the censored measurements is retained in {s^} or it could be saved in 

a censoring map. This matrix has the same dimension as the residual matrix and 

its element are unity in the positions where a measurement is censored and zero 

elsewhere. This map is helpful in locating the faulty measurement source. If all 

the ones appear in the same row, the identity of the faulty measurement source is 

obvious. If ones appear in different rows, this may be due to either extreme noise 

or possibly multiple failures and identification requires additional logic. 

A statistical analysis of the censored residual matrix is performed under the 

Hq hypothesis that the residuals are samples of an innovations process. A quadratic 
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statistic referred to as (X^ )j for the jth step, normalized by the covariance under 

HQ, is formed for each of the N residual vectors as shown below. 

{Xi)j={^|)Tvrl(i.f) j = l.N 

Under Hg, this is a chi-square random variable with n degrees of freedom, where n is 

the dimension of the residual vector. This statistic is compared with the threshold 

c^ for a zero mean test size of as defined below. 

c i  =  X n ( a i )  

aj = Prob [(Xi)j > ci] 

n = degrees of freedom of (X^ )j 

If each chi-square statistic supports Hq for test size then the test of the 

residuals is complete and the two confidence regions will most surely overlap. Thus 

the censored state estimates need not be calculated. If one or more of these test 

statistics do not support HQ, then further analysis is performed. Suppose that the 

test statistic which exceeds the threshold occurs at step 1 where 1 < 1 < N. One of 

the measurement sources at step 1 may possibly be censored. 

The decision as to which source will be censored is made by forming another 

set of statistics associated with a single measurement source in a time-wise fash­

ion across the censored residual matrix from step 1 through step N. Each of these 

statistics is quadratic in form and is normalized by the variance obtained from the 

corresponding main diagonal elements of Vj^. The statistic referred to as (X2){ for 

the ith measurement source is given below. (The subscript on the residual vector 

and the covariance matrix which is inside the parentheses refers to the time index 
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and the subscript outside the parentheses refers to the element in the vector or 

matrix.) 
N 

(X2)i = / (Vj)ii i = l,n 
j = l 

One can further reduce the chance of censoring a measurement by requiring 

the largest of these statistics to exceed a threshold C2 obtained from the correct 

reference distribution for a zero mean test of size o.^- If the residuals are zero mean 

then this statistic is a chi-square random variable with N—1+1 degrees of freedom, 

thus 

«2 = Prob [(X2)i > C2] 

N - 1 + 1 = degrees of freedom of (X2)} 

The source which is censored is the one with the largest statistic (X2)i which 

also exceeds C2. If none of the n statistics is larger than C2, then no censoring at 

step 1 is performed and the analysis moves to the next step after 1 where (X]^)j 

exceeds c^. If however the largest (X2)m exceeds C2, then measurement source m 

at step 1 will be censored and a one would be placed in the censoring map in row 

m and column 1. 

At this point the decision has to be made as to how the measurement is to 

be censored. It was decided to simply remove the linear trend in the residuals 

from this source and this forces these residuals to be zero mean. This is done by 

finding a least-squares fit of a ramp function to the censored residual associated with 

the possibly faulty source from tj to tj^j. The sample which is removed is simply 

the value of the estimated ramp function at tj. This sample defines the non-zero 
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element of the sj vector and this element appears in the mth row. This completes 

the analysis at tj. 

A new set of censored residuals with the sj vector removed is then com­

puted from step tj_j_2 to step t|\^ and the chi-square statistics associated with only 

these steps are re-computed. The same logic is used in determining whether any of 

the residuals in the range from step tj^ ^ to step will be censored. This process 

is repeated until no more censoring is required and the result is the set of censoring 

vectors k=l,N. 

Using /ig and {s^}, the set of censored filter estimates {x^} are computed and 

the two-confidence region overlap tests are performed at each of the N steps. If 

any test yields no overlap, then the alarm is raised and the censoring map is used 

to identify the faulty measurement source. At this point /zq is re-computed for 

use in the next window of data and the integrity analysis for the current window 

of data is complete. In the next window, a new set of N residuals from the un-

censored filter are saved and the process is repeated. The test designer would need 

to supply additional logic to decide whether any faulty measurement source would 

be removed. 

The presence of a non-zero //g vector means that some censoring was performed 

in a previous window. When the //g vector is  non-zero and none of the (X^ ) j  

statistics exceeds cj, then it is reasonable to zero out the //g vector for use in the 

next window. If at least one of the statistics exceeded cj, then it is reasonable 

to continue to update the /xg vector even if no censoring was performed on the 

current window. This logic leads to a minimal amount of censoring in the case that 

measurement noise is driving the statistics. If however a gradually increasing error 
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is present, the //g vector will keep the censored residuals large by not allowing the 

censored filter to track this error. In this way, the censored residuals are always 

larger than the un-censored residuals because they are less contaminated by the 

unmodelled error source, This is a desirable attribute of the censoring scheme. 

The censoring algorithm is best summarized with a sequence of logical steps 

similar to those which would be used in a computer implementation. The statements 

are based on a FORTRAN realization in that statements such as GO TO, IF, THEN, 

ELSE, and ENDIF are used. Also, the same variable may appear on both sides of 

the equals sign but the value which is stored after the operation is the one on 

the left-hand side. The following steps describe the censoring algorithm and the 

resulting hypothesis test in the state space. 

Given: /zg, {^k}' {^k}' k=l,N 

Let: {s^} = 0 

1. 1=1 

2. Compute k=l,N 

where + ^^k/^O 

3. Compute j = l,N 

where (Xi)j = 

4 .  I F [ ( X i ) j < c i  V j ,  j  =  l , N ] T H E N  

IF (1=1) THEN 
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^0 = 0 

GO TO 9 

ELSE IF (1=N) GO TO 9 

ENDIF 

ELSE (* at least one test rejects Hg *) 

1 = min{ j ! (Xi)j>ci, j = l,N} 

ENDIF 

5. Compute {(X2)i}, i = l,n 

N „ 
where (X2)i = E(i)i/(Vj)n 

j=l 

6. IF [max{(X2)i} < cg Vi, i = l,nj THEN 

l F [ ( X i ) j < c i  V j ,  j  =  l  +  l , N j T H E N  

GO TO 9 

ELSE (* at least one test still rejects Hg *) 

1 = min{ j I (Xi)j > cj, j = 1 + 1,N} 

GO TO 4 

ENDIF 

ELSE (* measurement m at step 1 will be censored *) 

m  =  {  i  I  ( X 2 ) i  =  m a x { ( X 2 ) j } ,  i  =  l , n }  
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(®l)ml ~ ^ 

where 

= a 

= a + bAt 

= a + b(N — 1) At 

let 

y 

F 

then 

[(î^f)m 

1  1  • • •  1  

0  A t  . . .  ( N - l ) A t  

T 

T 

a = 

ENDIF 

7. IF (1 < N) THEN (* update the residual matrix 

+ cj^sj k = 1 + 1, N 

1=1 + 1 

ENDIF 

8. GO TO 3 



www.manaraa.com

124 

9. IF [({sj^} = 0) and (/xg = 0)j THEN 

=  k  =  l , N  

All tests support HQ and HQ. 

ELSE IF [({sjj} = 0) and (^q + 0)] THEN 

/ iQ = 

{x^} = k = l,N 

All tests support HG and HQ. 

ELSE 

Compute 

k 
4  =  k  =  l , N  

j-1 

Perform N two-confidence region overlap tests using Eq. 5.2. 

Compute state bias for next window. 

N . 
^0 = H 

j=l 

ENDIF 

10. Go to the next window of data. 
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5.4. The Conditional Alarm Rate 

The hypothesis test concerning the horizontal error is composed of two separate 

tests. The first is the zero-mean test of the residuals and the second is the confidence 

region overlap test in the horizontal plane. It can be shown that the false alarm 

rate for the combined test is simply the product of the false alarm rates for each 

test. The exact alarm rate for the zero-mean test of the residuals is based on the 

censoring algorithm, and this probability turns out to be quite complicated. Thus, 

only an upper bound will be presented for this parameter. An upper bound will 

also be given for the probability of false alarm for the overlap test. 

The false alarm rate for the combined test is the probability of rejecting the 

null hypothesis in both tests, when in fact, both null hypotheses are true. Thus, a 

false alarm is the event where censoring occurs for at least one step inside a window, 

and the two confidence regions are disjoint for one test, given that the residuals are 

zero mean and the horizontal protection level has not been exceeded (r < tq). Using 

the definition of conditional probability, the joint probability of rejecting both null 

hypotheses can be written as the probability that the overlap test fails given that 

censoring occurs, times the probability that censoring occurs, where both of these 

probabilities are conditioned on both null hypotheses being true. 

Thus, 

Prob(false alarm) (5.7) 

= Prob(censoring occurs for at least one step and no overlap occurs 

given the residuals are zero mean and r < rg) 

= Prob(censoring occurs for at least one step | residuals are zero-mean) 
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X Prob(no overlap occurs j censoring occurs for at least one step 

and r < rg) 

The conditioning on the event that r < rg has been removed from the condi­

tional probability that censoring occurs for at least on step, since the posterior state 

estimation error is uncorrelated with the current residual (when the residuals are 

unbiased). The current residual is a linear combination of all the previous residuals, 

(and the initial condition) so the posterior estimation error is also independent of 

the complete residual sequence up through the current step. The following deriva­

tion shows that the expectation of the posterior estimation error and the current 

residual is zero, and when Gaussian statistics are assumed, the independence of 

these random variables follows. As usual, it is assumed that the estimation error 

is uncorrelated with the measurement noise when the filter model is correct. The 

Kalman gain Kj^ given in Eq. 3.22 is used in the derivation. 

\Tl E T = E 

= E 

( X k  - X k ) ( Z k  )  

{(I - - KkVk} {Hke[ + Vfe}'^ 

( I - K k H k ) E  

- ( I - K k H k ) E  

( I - K k H | , ) P | ^ H f - K k R k  

- T 

H, 

K k E  

K ^ E  

T 
Vk^k 

' k ( e k )  H T 

P k ^ k  I - ( H k P ^ H f  ^ R k ) - ' H k P k H j  

- ( H k P k H i f  +  R k ) ~ ' R k  

I - ( H k P k " H k ^  + R k ) ^ X H k P k H k  + % :  

P k H k M l - I ]  0 
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We will now proceed to obtain each of the probabilities given in Eq. 5.7. 

The censoring operation is a two step process where the variables j = l,N 

are first calculated to test whether each residual vector is zero mean. When any of 

these statistics are found to exceed the significance level c^, the variables {X?}^, 

i=l,n are then formed. If the maximum of these statistics exceeds significance 

level C2, then censoring occurs. This is a sequential test where the two tests are 

correlated since they both contain a term which is proportional to the square of 

a residual from one measurement source. It may be possible to account for this 

correlation but this would lead to an alarm rate which is related to the satellite 

geometry through the residual covariance matrix. Thus, an upper bound on the 

alarm rate which is independent of the geometry may be more appealing than an 

exact expression. One such bound can be obtained with the following argument. 

Prob [false alarm in censoring test] 

= Prob [at least one censoring during N steps 

given the residuals are zero mean] 

= Prob ^statistics are chi-square and at least one (X^ ) j  >  c^ 

and max{(X2);, i = l,n} > C2] 

= Prob |max{(X2)i, i = l,n} > C2 | at least one (X^jj > c^j 

X Prob at least one (X^^ > c^] 

< Prob I at least one > c^j 

= 1 - Prob I no (X^ ) j  > c^ j 

=  1  -  P r o b  i ( X i ) j  <  c ^ ,  V  j ,  j  =  l , N j  
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= 1 - Prob [(Xi)j < 

= 1 — ( 1 — «2. 

The upper bound is generated by removing the probability of the event where 

max{(X2)j, i = l,n} > C2 given that one (X]^)j > . As a result, «2 does not 

appear in the censoring alarm rate. It may be that this upper bound is close to the 

true alarm rate since if «2 is chosen close to a-j^, then it is likely that the maximum 

of {X2}; will be large (and exceeds C2) given that one {X^}j exceeds c^. 

The alarm rate due to the two confidence region overlap test in the horizontal 

plane is the probability that the confidence regions do not overlap given that the 

radial error in the horizontal plane is less than the protection level rg. The test stops 

the first time the two confidence regions do not overlap so we are only concerned 

with having a single alarm and the number of steps inside the window does not 

affect the alarm rate in this test. An upper bound for this alarm rate is obtained 

with the following argument. 

Prob(false alarm) = Prob (no overlap at one test j r < rg and censoring occurs) 

= Prob (associated with x,y values outside CRj 

and inside circle of radius rg about x) 

= ag — Prob (associated with x,y values outside 

circle of radius rg about x) 

< ag 

where 

CR]^ = confidence region about x 
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CR2 = confidence region about 

The censored filter is defined under the hypothesis that the censored state 

estimate is unbiased and as a result the confidence region about will track the true 

parameter. Thus when the true parameter is inside CRj, the confidence regions will 

overlap. When the true parameter is outside CR^ but inside the protection circle 

of radius TQ about x, it is possible that the confidence regions do not overlap since 

one can shift CR2 so that the true parameter is inside CRg while the confidence 

regions do not overlap. As soon as the radial error exceeds rg, the confidence regions 

will then be disjoint (because of the choice of rg) with the assumption that CR2 

contains the true parameter. The result is that a false alarm may occur for the 

set of x,y values outside CR^ but inside the protection circle of radius rg and the 

probability associated with these point is less than 03. 

The false alarm rate for the combined test of the residuals and the overlap test 

in the horizontal plane is the product of the false alarm rates for each test and is 

given in Eq. 5.8 below. 

= Prob(at least one censoring given residuals are zero mean) 

X Prob(no overlap at one test | r < rg and censoring occurs) (5.8) 

< 

where 

«2 = test size for zero-mean test of residual vector 

0:3 = test size used to set confidence region in horizontal plane 

Typical parameters for the GPS integrity problem may be N = 5, = 02 = 

.00005, «3 = .005, and as a result P^g^ = .00000125. The overall alarm rate for a five 
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hour mission would be .0045 and corresponds to an alarm about every 220 missions. 

The choice of a-j_ is made to minimize the alarms due to selective availability, un-

modelled acceleration noise, and sudden frequency shifts of the receiver oscillator. 

As a result, the satellite error may have to be quite large before censoring begins. 

5.5. The Miss Rate 

The conditional miss rate is the probabiHty that the two confidence regions 

overlap given that the radial error has exceeded the protection level. In other words, 

the un-censored horizontal estimate has diverged from the truth by more than the 

protection level but the confidence region about the censored estimate is contained 

inside the protection circle. In this case, neither confidence region contains the true 

parameter and overlap can occur for all values of the true parameter which are 

outside of the protection circle. An upper bound on the miss probabiHty can be 

obtained as follows. 

Prob(miss) = Prob (overlap occurs given r > rQ) 

= Prob (associated with x,y values outside 

circle of radius rQ about x ) 

= «3 — Prob (associated with x,y values outside CRj and 

inside circle of radius rg about x) 

< ag 

The trade-offs between the alarm rate and protection level behave as one would 

expect. If an improved protection level is desired (smaller than rg), then the X2(a!g) 

significance level used in Eq. 5.3 must be decreased and this leads to a larger ag and 
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thus a larger overall alarm rate and miss rate. Conversely, if one wishes to decrease 

the alarm rate then either a-^ or ag or both may be decreased. Decreasing will 

lead to a hi^^^er miss rate because the censoring will begin later and the censored 

estimate will not remove the influence of the early portion of the error which is 

driving the horizontal error. If ag is decreased, then the size of the confidence 

regions increase and the radial protection is larger. 

5.6. Integrity Monitoring Test Design With the Censored Filter 

The results of the previous sections can be brought together to generate a 

design procedure for applying the censored Kalman filter in an integrity monitoring 

framework. Such a design begins by first specifying the redundancy assumptions 

upon which this scheme is based. Other aspects related to basic Kalman filter 

design must also be addressed to satisfy certain notions of filter robustness and also 

filter stability. The trade-offs between the key parameters such as the protection 

level and the alarm and miss rates are then discussed. 

The effectiveness of the censored filter is based upon the observability of large 

unmodelled measurement errors in the residuals. Thus, there must always exist 

enough redundancy in the measurement information so that a good solution can be 

obtained using subsets of measurements of size one less than the number available. 

This is equivalent to the requirement that the subsolution dilution of precision 

parameters are not only small, but also homogeneous. This requirement plays a key 

role in the identification of the errant source. It was shown in an earlier chapter that 

an error was not detectable in a measurement source which had poor geometry in 

the subsolution which did not use this source. If the latter redundancy requirement 
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is not met, there is little hope of detecting errors in such a measurement source. 

The scheme used here is based upon batch processing of the measurements 

where it is assumed that measurements from each source are available (or are saved) 

so that the measurement vector can be processed in one step. This type of processing 

preserves the identity of the errant measurement. In the first step when the failure 

enters the system, the error does not affect the residuals from the other sources. 

In the following steps, the residuals for all measurements will be affected since the 

previous residuals get mixed with the current ones, but the residual sequence from 

the errant source should be the largest. However, if the measurements at the current 

step are processed sequentially, the order in which the measurements are processed 

has an effect on the residuals and it is difficult to identify the errant measurement. 

A conservative filter design is helpful in keeping the false alarm rate small but 

a stable filter design is beneficial in identifying the errant source in the presence of a 

bona fide failure. Thus, one has to trade-off these characteristics depending on which 

is more important. Increasing the white noise amplitudes in the process model is 

helpful in preventing filter divergence by decreasing the filter time constants, and in 

this way the covariance matrix does not tend to get too small as the filter operates 

for a long period of time. This will prevent false alarms by keeping the residuals 

small and unbiased in an unmodelled environment, such as a period of higher than 

normal vehicle acceleration. Colored measurement noise which is not accounted 

for with an augmented state vector can be partially accounted for with a simple 

increase in the main diagonal elements of the measurement noise covariance matrix. 

Thus by keeping the Kalman filter fairly robust or insensitive to unmodelled errors 

which are not considered to be failures, a reduced false alarm rate can be achieved. 
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Table 5.1: Summary of censored filter design parameters 

protection level 

3
 

C
O

 V
I 

false alarm rate Pfa< [ l - ( l - a i r ] a 3  

miss rate Pm < «3 

detection probabihty Pd > 1 - «3 

mission alarm rate PPA < 1 - (1 - PfJ" 

where 
Cm = max{(Tx, cTy} from Kalman filter covariance 

= zero mean test size of residual vector 
«3 = zero mean test size of horizontal error 
N = number of steps in window 
m = number of tests performed during mission 

However, if a gradually increasing failure must be detected, then a stable filter (one 

with large time constants relative to the failure modes) will be helpful in identifying 

the errant source since the state estimate cannot be pulled away from truth as 

quickly. In this way, the residuals from the errant source remain the largest for a 

longer period. If the induced error becomes large during this period, then a correct 

identification will be made at the time of detection. 

With these filter design considerations in mind, a meaningful integrity moni­

toring design may be developed. A summary of the basic performance measures is 

presented in Table 5.1. There are at least a few different design procedures which 

could be followed, with respect to the order in which each of the design parameters 

is specified. The design steps for one such algorithm are presented below. 

1. Specify the window size 

The time-to-alarm specification, ta, is used to determine N, 

which is the number of steps inside the window. For the censored 
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filter, ta = NAt, where At is the time between updates of the state 

vector in the filter. 

2. Specify the protection level 

The test size ag is adjusted to achieve a reasonable compromise 

between the protection level and the miss rate. A small confidence 

region (large ag) will detect early filter divergence and yields a small 

protection level, but also a large miss rate. A large confidence region 

(small ag) is helpful in reducing the number of missed identifications 

and leads to a small miss rate, but also a large protection level. 

3. Specify the alarm rate 

The test size is adjusted to satisfy the overall false alarm rate 

specification. However, if aj is too small, the censoring algorithm 

becomes insensitive to early filter divergence. If the Kalman filter 

time constants are small relative to the failure modes of interest, 

then the test sizes aj and «2 should be made larger in order to iden­

tify the errant measurement source before the filter can re-adjust 

its state estimate to track the failure. Effective test sizes should 

be determined (using estimation techniques such as the method of 

moments described in section 5.7) if filter mismodelling leads to 

over-normalization of the residual statistics. 
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5.7. Simulation Results 

A limited study of the censored Kalman filter was performed to analyze the 

effectiveness of the scheme in detecting and identifying a single satellite failure 

where the all-in-view satellite geometry is the only source of redundancy (besides the 

memory of the filter). One satellite geometry at Chicago was chosen which appeared 

to have satisfactory subsolution geometry. The dilution of precision parameters for 

the all-in-view solution and the subsolutions are given in Table 5.2and are valid over 

a twenty minute period during which the simulations were performed . A modest 

quality crystal oscillator was assumed so the results are not dependent on a highly 

stable frequency reference. The GPS receiver was required to perform the integrity 

management ten minutes after a "cold-start" where the receiver is turned on and 

is initialized with rough estimates of position, velocity, clock bias and drift. 

Table 5.2: Dilution of precision parameters at t=32130s 

Solution 1 2 3 4 5 6 7 i AIV 
HDOP 1.43 1.32 1.28 1.29 1.22 1.21 1.44 1 1.12 
FDOF 2.22 2.03 1.98 2.12 2.25 1.99 2.76 1 1.85 
TDOF 1.15 0.94 0.94 1.17 1.07 0.95 1.73 1 0.94 
GDOP 2.50 2.24 2.19 2.42 2.49 2.20 3.26 i 2.08 

The following assumptions were made about the receiver error when the receiver 

was first started. The initial uncertainty (standard deviation) in the horizontal 

position states was 600m, the uncertainty in the vertical position state was 100m, 

and the velocity uncertainty in each direction was .Im/s. The initial variance of the 

receiver clock offset was obtained by assuming the clock offset error to be uniformly 

distributed between ±1/2 of the CA code length (1ms) and this led to a variance of 
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Table 5.3: Truth and filter parameters used in four scenarios 

IC # 1 IC# 2  I C # 3  I C  # 4  
Low dyn. 

N o  S A  
High dyn. 

N o  S A  
Low dyn. 

SA on 
Low dyn. 

SA on 
Ai m^/s^ truth 4.0 4.0 4.0 4.0 
Ai m^/s^ filter 4.0 100.0 4.0 100.0 
Rii m^ truth 100.0 100.0 100.0 100.0 
Rii m^ filter 100.0 100.0 1200. 1200. 

7.5x10 m in terms or range. The clock drift error which represents the fractional 

frequency offset was assumed to be one part in 10^ for a typical crystal oscillator and 

corresponds to a standard deviation of 3m/s in terms of range drift. The standard 

deviations were used to scale N(0,1) variates and these scaled random numbers 

represent the initial estimation error in the state vector when the initial estimates 

of the system errors are zero. The main diagonal of the error covariance matrix of 

the Kalman filter was filled with the appropriate variances. 

A set of initial condition files was generated, using these statistics as the starting 

point, to represent four different scenarios with regard to the vehicle dynamics and 

the presence of selective availability. The filter parameters used in the four situations 

are given in Table 5.3. (Also, see Fig. 3.1 for the definition of A]^.) The statistics 

of the true selective availabihty process were the same as those described in Section 

4.8. Each of these scenarios was run for ten minutes and generated a file of true 

errors, the estimates of these errors, and the error covariance matrix. The files 

served as the starting point for the experiments where a satellite failure was added 

to one of the range measurements. 

A mild ramp failure with a slope of Im/s was placed on each satellite measure-
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ment one at a time for each of the initial condition files. There were seven satellites 

in view (above a 7.5 degree mask angle) so there were seven experiments for each 

file. For the files with the high dynamics parameters, the experiments were also 

run with the vehicle performing a series of turning maneuvers with a bank angle of 

45 degrees (1 g) and a 120s turning period. The acceleration model is developed in 

section 3.4.3. This acceleration is only accounted for in the filter with an increase in 

the process noise spectral amplitudes in the position states. Thus there were a total 

of six different scenarios which were investigated and the results are summarized in 

Tables 5.4- 5.9. 

The data in the column labeled as the "max. error in window" are the largest 

horizontal error from the navigation filter inside the window in which the error was 

detected. The data referred to as "censored error at det." are the horizontal error 

in the censored filter at the time of detection. The units of the error is meters. Also 

listed in each table are the largest and smallest standard deviation in the horizontal 

plane, the correlation coefficient, and the protection level (tq) corresponding to 

these standard deviations and test size ag. 

The test sizes for the zero mean test of the residuals (a^, 0:2) and the confidence 

region (0:3) were arrived at by observing both no-failure and failure data. The test 

sizes for the test of the residuals were chosen so that no alarms occurred for no-failure 

experiments but also, so that the test was sensitive to rejecting the null hypothesis 

in the failure-added experiments when the residuals began to get unusually large 

and the induced horizontal error was appreciable. The test size ag was chosen so 

that censoring which was due to the incorrect measurement source did not raise the 

alarm while the induced horizontal error was still well below the protection level. 
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Table 5.4; Detection and identification results using IC # 1 

""max 6.6, ^^min = 4.4, p = —.107 
4 & 9 < r o < 6 7 ^  

ai = .0005, «2 — .003, ctg = .003, Threshold= 11.61 
Detected Identi­ Test Max. error Max. error Censored 

Sat. ^ at step # fication statistic in window missed error at det. i 
1 80 yes 14.61 46.0 42.0 4.16 
2 79 yes 11.67 46.4 3&6 0.94 
3 80 yes 12^W 40.6 3&9 
4 104 yes 15.69 41.5 55.9 6.58 
5 130 yes 12.09 46.3 51.1 9.02 1 
6 no yes 12.79 35.4 51.1 9.02 1 
7 122 yes 13.52 52.4 5&2 17.1 ! 

Table 5.5: Detection and identification results using IC # 2 

^max ~ 8.3, O'rxun = 5.3, p = —.112 
5 4 . 2  < r o < 8 & l  1 

"1 = .0005,0=2 = .003, «3 = .003, Threshold^ 11.61 
Detected Identi­ Test Max. error Max. error Censored ' 

Sat. # at step ^ fication statistic in window missed error at det. 
1 99 yes 13.70 63.1 3^9 &29 i 
2 93 yes 14.48 4&6 5^3 18.93 
3 107 yes 12.98 5&5 53.6 6.54 
4 104 yes 14.58 47.4 55.3 &82 : 
5 174 yes 13.53 72.5 6&7 14.40 : 
6 134 yes 12.89 65.7 60.0 15.83 
7 175 yes 1&39 70.3 74.2 32.99 ! 
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Table 5.6; Detection and identification results using IC ^ 2, unmodelled 
acceleration 

"^max — 8.3, (Tmin — 5.3, p — .112 
54.2 < ro < 85.1 

«1 = .0005, «2 = .003, as = .003, Threshold= 11.61 
Detected 

Sat. # j at step # 
Identi­
fication 

Test 
statistic 

Max. error 
in window 

Max. error 
missed 

Censored 
error at det. 

1 90 yes 17.05 54.5 64.0 14.19 
2 i 70 yes 13.27 26.7 29J 43.13 
3 98 yes 14.47 52.0 60.4 26.29 
4 95 yes 12.91 36.5 44.4 13.58 
5 180 yes 13.40 75.1 7&8 13.04 
6 150 yes 13.72 63.1 69.5 &88 
7 148 yes 14.26 6&4 61.7 27.00 

Table 5.7: Detection and identification results using IC # 3 

17.9, = 11.7, p = --.092 
122.1 < To < 182.7 

«1 = .0005, «2 = .003, #3 = .003, Threshold= 11.61 
Detected Identi­ Test Max. error Max. error Censored 

Sat. ^ at step # fication statistic in window missed error at det. 
1 306 yes 13.01 152.6 165.6 38J 
2 285 yes 12.38 150.5 150.7 17.1 
3 229 yes 12.02 100.2 108.3 _j 19.1 
4 326 yes 11.81 130.7 130.8 22J 
5 345 yes 11.72 116.9 129.4 00

 

6 256 yes 11.78 8&9 112.2 2&2 
7 398 no 12.17 149.6 146.0 236.0 j 
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Table 5.8: Detection and identification results using \C A 

O-max = 24.8, (Tmin = 15.8, p = -.097 
160.9 < ro < 249.0 

«1 = .0005,0=2 = .003,«3 = .003, Threshold= 11.61 
Detected Identi­ Test Max. error Max. error Censored 

Sat. # at step # fication statistic in window missed error at det. 
1 297 yes 12.35 136.2 140.6 3L8 
2 260 yes 13.31 140.7 131.9 26.0 
3 380 yes 11.81 152.9 148.8 5.2 
4 365 yes 11.72 155.5 161.0 24.3 
5 470 yes 11.68 169.1 175.0 5L3 1 
6 380 yes 11.63 156.6 156.0 4.4 ! 
7 505 no 11.74 190.1 189.9 28&0 1 

Table 5.9: Detection and identification results using IC # 4, unmodelled 
acceleration 

max — 24.8, = 15.8, p — --.097 
160.9 < ro < 249.0 

«1 = .0005, «2 = .003, = .003, Threshold= 11.61 
Detected Identi­ Test Max. error Max. error Censored 

Sat. ^ at step # fication statistic in window missed error at det. 
1 375 no 11.85 163.9 160.0 180.7 
2 270 yes 16.66 162.4 160.8 3&4 
3 355 yes 12.37 123.2 153.2 4&2 
4 355 yes 11.70 161.0 154.0 18.3 
5 469 yes 1&,29 156J8 175.9 11.3 
6 400 yes 12.01 174.9 180.8 18.1 
7 393 yes 12.05 141.0 134.8 40.6 
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This led to a more confident decision as to the failure source. However, if an earlier 

detection is desired, a larger test size ag (smaller allow for a smaller 

protection level but a less confident identification. 

For the test sizes used in these experiments, an upper bound on the false alarm 

rate was 7.5 x 10~® (using Eq. 5.8) for a five second window (five residual vectors). 

This is a legitimate upper bound when the residual covariance matrix which is used 

the normalize the residual statistics is "close" to the true covariance matrix, as in 

the experiments with no selective availability. As a check, a test-of-distribution 

was performed on the residual statistics from a no-failure experiment. The sum 

of n independent chi-square variates divided by n will approach the mean of the 

distribution, which is the degrees of freedom in this case, as n gets large. For 

n=200 and seven satellites, such a statistic yielded a value of 6.9 which agrees well 

with the known result. 

In the experiments with selective availability, the large measurement error vari­

ance (which attempts to account for the presence of SA) led to very small residual 

statistics in the no-failure experiments. As a result, the residual statistics are fairly 

insensitive in that large satellite failures are required to generate statistics which 

do not support the null hypothesis. In this situation, the chi-square statistics are 

over-normalized by some scale factor c which is less than unity and thus, the alarm 

rate is smaller than value mentioned above. The method of moments, a statistical 

procedure for estimating the parameters of a distribution, was used to estimate the 

scale factor c. This estimate can be used to calculate an effective test size by 

dividing the original threshold by c and then by noting the test size for 

this new threshold. Estimates of c and d can be found by solving the following 
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equations. (The mean of the chi-square distribution is the degrees of freedom and 

the variance is twice the degrees of freedom.) 

Let 

X; = (>'f)Tvrl(^f) 

c = de-normalizing scale factor 

d = degrees of freedom of each chi-square Xj 

n = number of variates in experiment 

Then 

1 ^ 
- = cd (5.9) 
^i = l 

-  iZ = 2c2d + (cd)2 (oJO) 
" i = l  

Using no-failure data from a high dynamics experiment with SA, seven satel­

lites, and n=215, the value for Eq. 5.9 was .9383 and the value for Eq. 5.10 was 

1.122. As a result, d = 7.28 and c = .1288. Thus the effective threshold with the 

scale factor c removed would be %y(.0005)/c = 26.02/.1288 = 203. This would lead 

to an extremely small test size since ^^(lO""®) is 40.5. If one set the threshold 

for the zero mean test of the multivariate residual vector at 5.22 (= 40.5 x .1288), 

the effective test size would be 10~®. This would generate an overall alarm rate 

of 1.5 X 10~^ for a five second window. Thus, the window alarm rate for the SA 

experiments presented is less than 1.5 x 10^®. 

The approach of increasing the measurement noise variance to account for 

SA also caused problems with regard to the censoring algorithm identifying the 

errant measurement. In some experiments it turned out that the largest chi-square 
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statistic for each satellite, at the time of detection, did not correspond to the errant 

satellite. In these cases, a wrong measurement would be censored and the censored 

state estimate would diverge from the truth. Failure detection is still provided but 

a missed identification occurs. This behavior is due mainly to the length of the filter 

time constants and to the non-homogeneity of the dilution of precision parameters. 

Since the clock bias error appears along the line-of-sight of the range vector, 

the TDOP parameter plays a key role in understanding the relative bias of each 

measurement residual when a failure is present. If a gradual ramp error is placed in a 

satellite which has large subsolution TDOP relative to at least one other subsolution, 

then, depending on the stability of the clock error model, at some point the residual 

bias associated with this satellite will become small. This is because a filter with 

short time constants can adjust the state vector estimate to track the error in a 

few tens of seconds and thus remove the bias in this measurement. (This type of 

response is shown in Fig. 4.3.) However, the residuals from satellites with small 

subsolution TDOP relative to largest TDOP may still remain large and the wrong 

source is censored. A filter with a high degree of stability in the clock model will 

not allow the state estimates to change as quickly and the errant measurement will 

then have the largest residuals for a longer period of time. The three experiments 

where a missed identification occurred were re-run assuming a receiver clock with 

good stability and this provided enough implicit redundancy to allow for correct 

identification. The results are given in Table 5.10. 

As the filter model is made sub-optimal to account for unmodelled acceleration 

and selective availability, the effects of the subsolution geometry appear to become 

more pronounced. This was manifested in the simulations as a missed identification. 
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Table 5.10: Re-run of missed identification experiments with good clock 

ai = .0005, Q2 = .003, as — .003, Threshold^ 11.61 
Using IC # 3: 122.1 < ro < 182.7 

Detected 
Sat. # 1 at step ^ 

Identi- Test 
fication | statistic 

Max. error 
in window 

Max. error 
missed 

Censored 
error at det. 

7 i 481 yes 11.93 j 166.2 175.8 82.4 
Using IC # 4: 160.9 < ro < 249.0 

Detected 
Sat. # 1 at step # 

Identi- j Test 
fication i statistic 

Max. error 
in window 

Max. error 
missed 

Censored 
error at det. 

7 : 525 yes 11.74 205.9 195.8 94.9 
Using IC # 4: Acc. on, 160.9 < ro < 249.0 

Detected 
Sat. # 1 at step # 

Identi- Test 
fication statistic 

Max. error 
in window 

Max. error 
missed 

Censored 
error at det. 

1 1 324 yes 14.53 159.3 167.3 20.9 

At first glance, the subsolution geometry appeared to be satisfactory since all di­

lution of precision parameters were small. However, there was almost a two-to-one 

difference (see Table 5.2) between the TDOP of subsolution 7 and subsolutions 2, 

3, and 6. Also, subsolutions 1, 4, and 5 have a TDOP which is almost 20 percent 

larger than than the TDOP in subsolutions 2, 3, and 6. These slight differences 

among acceptable small dilution of precision parameters seem to have a dramatic 

effect on the identification of the errant satellite when the sensitivity of the filter is 

decreased to account for selective availability. 

An obvious solution to this problem is to add more redundancy to the solution 

in a manner which smooths out the TDOP in each subsolution. This would imply 

using additional information such as knowledge of very stable clock (as in implicit 

or explicit clock coasting) or measurements from a baro-altimeter, a Loran receiver 

or other aiding equipment. The use of this information for integrity purposes is 

different than when it is used in a hybrid navigation system. It is assumed that the 
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measurements are calibrated externally from the navigation filter and are used in 

a detection filter only when the GDOP of the subsolutions are non-homogeneous. 

(These situations are predictable by the receiver.) In this way, no more unknowns 

are added to the solution when the calibrated measurement is added to the set of 

sensors. The calibration accuracy will degrade over time while the measurement is 

being used so it is assumed that the calibration is valid over a long enough period, 

say 15 minutes, during which the extra redundancy is needed. After this period, 

the measurement is removed from the detection filter and is re-calibrated until it is 

needed for again integrity purposes. 

In summary, the following characteristics are observed when the censored filter 

correctly identifies the errant measurement source. 

1. The subsolution TDOP of the errant source is not large relative to TDOP of 

the other subsolutions. The optimality in the filter model or stability of certain 

state elements will allow for more relative differences among the subsolution 

TDOP. 

2. The measurement source which has the largest residuals is the source which 

contains the failure. 

3. When the bias is removed from the errant source at tj^ and is propagated 

through the rest of the window, the censored residuals at t|^ are smaller than 

before censoring, while the censored residuals after tj^ (and thus the chi-square 

statistics) are larger than before the propagation. Thus removal of the error 

at the current step makes the error more observable at the next step. 

4. Censoring has a "clamping" effect on the censored source where the bias 
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(rather than the noisy samples) is removed and the censored estimate will 

track the true state vector. 

When the errant source is not correctly identified, the following observations 

can be made. 

1. The TDOP of the subsolution for the errant satellite is larger than at least 

one TDOP from the other subsolutions. 

2. The measurement source with the largest chi-square statistics is not associated 

with the failure source. 

3. The censored estimate diverges from both the truth and the un-censored es­

timate, but a correct detection is still obtained since the confidence regions 

will eventually not overlap as the failure persists and increases in magnitude. 

4. If the wrong source is censored, the censored statistics may tend to 

increase to a point where the so-called "improved" residuals will not support 

the null hypothesis. It may be possible to use additional logic to remove this 

source from the set of sources which may be censored for a specified number 

of windows. The source with the next largest statistics may then be censored. 

A more complicated approach to choosing which source to censor could be 

made by first censoring each measurement separately and then choosing the errant 

source as the one which generated the largest censored statistics on the following 

steps and the smallest statistics at the current step. 



www.manaraa.com

147 

5.8. Summary of Censored Filter Results 

The results of the simulations presented in Section 5.7 are summarized in Ta­

ble 5.11, for experiments with no selective availability, and in Table 5.12, for experi­

ments with selective availability. There were seven satellites in view (for a 7.5 degree 

mask angle) and a Im/s ramp failure was placed on each satellite one at a time. 

Three dynamic environments were considered so there was a total of 21 experiments 

for both cases of no SA and full SA. The subsolution geometry was considered to 

be good since each subsolution GDOP was less than 3.3 (see Table 5.2). A mod­

est quality crystal oscillator was assumed with Allan variance parameters given in 

Table 3.1. 

Table 5.11: Summary of censored filter results with no SA 

Vehicle 
environment 

Protection level Largest radial 
error 

Largest time 
to detection 

Vehicle 
environment (ro)min (ro)max 

Largest radial 
error 

Largest time 
to detection 

Low dyn. 43.9m 67.5m 55.9m 130s 
High dyn. 54.2m 85.1m 74.2m 174s 

High dyn. -H turns 54.2m 85.1m 76.8m 180s 

The key performance measures with no SA were found to be 

1. Miss rate: Pm < .003 

2. Alarm rate: < 7.5 x 10~® 

3. Mission alarm rate (5 hours): Pp\ < .027 

4. Perfect failure detection (no misses) 

5. No wrong identifications in 21 experiments 
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Table 5.12: Summary of censored filter results with SA 

Vehicle 
environment 

Protection level Largest radial 
error 

Largest time 
to detection 

Vehicle 
environment (ro)min (ro)max 

Largest radial 
error 

Largest time 
to detection 

Low dyn. 122m 183m 166m 398s 
High dyn. 161m 249m 190m 505s 

High dyn. + turns 161m 249m 181m 469s 

The key performance measures with SA were found to be 

1. Miss rate: Pm < .003 

2. Alarm rate: < 1.5 x 10""® 

3. Mission alarm rate (5 hours): Pp^ < 5.4 x 10^^ 

4. Perfect failure detection (no misses) 

5. Three wrong identifications in 21 experiments 

It should be pointed out that these results are not the best that could be 

achieved. Smaller protection levels with SA could be achieved by decreasing the 

size of the horizontal confidence regions and also by improving the manner in which 

the presence of SA is acknowledged in the filter. The method of simply increasing the 

measurement noise covariance led to a larger standard deviation in the horizontal 

plane, and this directly increased the protection level. 



www.manaraa.com

149 

6. CONCLUSIONS 

The purpose of this research was to analyze the redundancy which is intrinsic 

to the 24 satellite GPS constellation and to develop algorithms which exploit this 

redundancy in an effort to assure the integrity of GPS for the civil aviation com­

munity. Various methods which have been previously presented were analyzed in 

Chapter 4 and were found to to be effective in detecting the presence of a satellite 

failure with an acceptable detection probability when the satellite geometry was 

favorable for detection. However, the main concern in the integrity problem is to 

maintain a bound of the horizontal position error which is induced by an out-of-

specification signal. The tests developed in the previous approaches suffer from 

providing only a weak inference to this parameter. A new scheme referred to as a 

censored Kalman filter is developed in Chapter 5 and it places the final integrity 

check directly in the horizontal plane. 

This censored filter scheme has a number of advantages over the other ap­

proaches. The scheme is conservative in classifying a signal as a failure since a 

large measurement error may be tolerated if it does not induce a horizontal error 

which is excessive. A conservative upper bound on the horizontal protection is 

presented which is proportional to the accuracy of the navigation filter. An upper 

bound on the false alarm rate is obtained analytically and allows the alarm rate 
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for an extended mission to be set to a level which is operationally satisfactory. An 

approximate miss rate is also presented. Identification of the failure source is also 

provided for as part of the scheme. 

The censored Kalman filter was tested in a number of different scenarios with 

regard to the vehicle dynamics and selective availability (SA) when a gradually 

increasing satellite failure is present. In an accelerating environment with SA, the 

scheme was able to protect against a 250m horizontal error with a 6s reaction 

time. The protection in a more benign flight environment is significantly improved, 

possibly as small as 100m without SA. Identification of the errant satellite was 

successful when the satellite geometry yielded homogeneous dilution of precision in 

all subsolutions and when the time constants of the filter were large relative to the 

time required to induce a large horizontal error. 

It was found that all integrity algorithms studied which use more than the 

minimum four satellites as the only source of redundancy suffer from an inability 

to detect large errors on key-satellites during periods of poor detection geometry. 

There is current interest in an optimized satellite configuration which minimizes 

the occurrence and duration of these poor detection geometries to less than a few 

percent of the time in the worst locations. Even if the poor detection geometries can 

be removed, the probability that one or two satellites will not be operational due 

to routine servicing (the user segment will be notified of this situation) is not zero, 

so it is likely that brief periods of poor detection geometry will occur. It appears 

that these situations will require the use of independent information from outside 

of the GPS receiver if integrity is to be provided at all times. 
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9. APPENDIX A. THE DIRECTION COSINES 

A summary of the equations used to obtain the direction cosines between the 

satellite range vector and the vehicle locally level unit vectors is given in this ap­

pendix. See [20] for a derivation of these equations. The true vehicle position defines 

the origin of a locally level earth fixed coordinate frame as defined below. 

rv(x,y,z) = 0 ix + 0 iy + Ryiz 

where 

X = north direction 

y = west direction 

z = upward direction 

Rv = distance of vehicle from center of earth 

ix?iy?iz = unit vectors in x,y,z direction 

The satellite position in a different earth centered inertial frame (u,v,w) is 

I"s(u, V, w) = 0 lu + 0 iy -f- Rgiw 

where 

Rs = distance of satellite from center of earth 

lu, iy, iw = unit vectors in u,v,w direction 
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The satellite position is then transformed into earth centered earth fixed coor­

dinates (ECEF) denoted as (X,Y,Z) as shown below. 

rs(X,Y,Z) = Rs cos(9xwix + cos iy ^ Rs cos ig 

where 

cos = sin 7 sin/3 

cos ̂ y^y = —cos 7 sin a — sin 7 cos a cos/3 

cos^2w ~ —cos 7 cos a — sin 7 sin a cos/3 

a = angle of ascending node 

= longitude where orbit crosses the equator 

/3 = incHnation angle between orbit and equator 

7 = angle of satellite inside orbit plane 

To convert the satellite coordinates from ECEF to the vehicle (x,y,z) coordi­

nate frame, one must transform a point with (X,Y,Z) coordinates into the (x,y,z) 

coordinate frame which is located at longitude </> and latitude 6. This can be done 

with a transformation matrix T whose elements are the direction cosines between 

unit vectors in the (X,Y,Z) and the (x,y,z) coordinated frames as shown below. 

rs(x,y,z) = Trs(X,Y,Z) 

= (rs)xix + (^s)yiy (rs)ziz 
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where 

cos ̂ xX COS 9̂ Y COS ^xZ 

COS ^yX COS 9yY cos 4yZ 

cos ̂ zX COS O^Y COS *zZ _ 

COS 9 sin# sincj) - sin 9 cos (j) 

0 cos (j) sin 0 

sin ̂  — cos 0 sin*?!) cos# cos </> 

The true distance to the satellite is the magnitude of the difference between 

the satellite position vector and the vehicle position vector. 

/'true — \/[(rs)x]^ + [(i's)y)]^ + [(rs)z - R-v]^ 

The direction cosines between the range vector and the locally level coordinate 

frame unit vectors are 

(rs)x 
cos 9 x p  

/'true 

COsfyp = 
/'true 
(rs)z 

cos 6 
R^ 

xp 
Ptrue 

In all the simulations, the coordinates of Chicago are 

(f) = 272.4 degrees west longitude 

6 = 41.7 degrees north latitude 

Rv = 6378.388 km 

The parameters of the 24 satellite GPS constellation shown in Fig. 1.1 are given 

in Table 9.1 where /3 = 55.0 degrees. 
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Table 9.1: Location of satellites in 6 plane, 24 satellite constellation at 
t=O.Os 

Ring Sat. #'s in ring a 7(to) for sats. in ring 
1 1,2,3,4 0. 0. 90. 180. 270. 
2 5,6,7,8 60. 15. 105. 195. 285. 
3 9,10,12,12 120. 30. 120. 210. 300. 
4 13,14,15,16 180. 45. 135. 225. 315. 
5 17,18,19,20 240. 60. 150. 240. 330. 
6 21,22,23,24 j 300. 75. 165. 255. 1 345. 

Assuming a circular orbit for the satellites, the angle of each satellite in an 

orbit plane is simply the initial angle 7 plus the angle subtended due to the angular 

velocity of the satellite relative to the orbit plane. The period of the satellite orbit 

is exactly one half of a sidereal day. 

-/(t) = Tftn) + 
rv y rv u; ^ 21600. x .99726957 

The motion of the earth can be accounted for by incrementing the longitude of 

the vehicle position as given below. The period of the earth rotation is one sidereal 

day. 

<;6(t) = 0(tn) + 
"/k ; yk U/ ^g200. X .99726957 
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10. APPENDIX B. THE CONSIDER FILTER 

This appendix describes how the correlation between the clock and position 

estimation error is accounted for when performing explicit clock coasting. In the 

consider filter il],ill], one accounts for un-estimated noise parameters by propagat­

ing the prior statistics of these parameters into the gain equation and covariance 

update equation. Thus one considers the effects of these parameters without hav­

ing to estimate them. The situation at hand is somewhat less general in that we 

have non-trivial estimates of the mean and covariance of the consider parameters 

and also the cross-correlation between these parameters and the parameters to be 

estimated. At tj^ we have the prior estimate of the complete system Xj^ which 

can be partitioned (assuming the process noise covariance matrix and the transi­

tion matrix is block diagonal) into Xj^ which contains all state variables except the 

clock states and which contains the clock states. The complete state vector and 

covariance matrix are partitioned as shown below where the conditioning is on all 

measurements prior to tj^. 

' (Px )k (P:^)k 
x; "k 

^k 

(Px)k = 
(Pyx)k (Py )k 

where 
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(Px )k ~ prior error covariance of x at tj^ 

(Pxy)k = prior correlation between estimation error of x and y at tj^ 

Pyx = (Pxy ) 

(P^)]^ = prior error covariance of y at tj^ 

At t]^, stop estimating y and only update x. The process and measurement 

equations are 

Xk+1 = 

yk+1 = ^k^k + "k 

Zk = Hk^k+JkYk + ̂ k 

The assumptions about the measurement noise are given in Eq. 3.15 and the 

sequences W|^, uj^, and assumed to be zero mean and mutually independent. The 

Q]^ matrix is partitioned to provide (Qx)k- The (Qy)k matrix is either obtained 

from the partitioning of the Qj^ matrix or from a different model as defined below. 

EIujuTj = = k 

[ o  i f j # k  

The update equations are 

^k = ^k +^k(^k-Hk^k -JkYk) 

fk = fk 
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The Kalman gain is (leaving out the time subscripts) 

K = (P-H^+ p-y jT)L- l  

L = HPxHT+JPjTJ^ + HPxyJ^+JPj^KH^^R 

The covariance updates are (with the Kalman gain and leaving out the time 

subscripts) 

Px = (I - KH) P- - KJ Pyx 

Pxy = (I - KH) p-y - KJ P-

Py = Py 

The projection equations are 

*k+ l  

^k+l = Ayk 

( P x ) k + 1  Qx 

( P y ) k + i  = ^k(Py)k^k Qy 

(Pxy)k+1 = $k(Pxy)kAf 

When clock coasting is completed, the appropriate matrices are reloaded to 

form the original system matrices X and P^ 
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11. APPENDIX C. DERIVATION OF CENSORED FILTER 

The (A,B,C,D) matrices provide a means for computing a censored estimate 

from the usual Kalman filter estimate. These matrices describe the connection of 

a state vector bias and a deterministic measurement sequence into the censored 

residuals and state estimates. Since these parameters are assumed to be fixed, 

the covariance properties of the censored filter are the same as those in the usual 

Kalman filter. The (A,B,C,D) matrices are recursive and are computed from 

matrices vyhich are part of the usual Kalman filter computations. The derivation of 

these matrices vyill now be presented. The process begins at tg where the censored 

filter estimate is equal to the Kalman filter estimate plus a bias /Wq as shown below. 

The superscript c will be used to identify the censored filter parameters. 

The censored estimate at the start of the next step is 

= Xj-+ #o>'0 

The measurement residual in the censored filter uses the censored estimate to 

predict the measurement and also allows for the removal of a fixed vector S|^. 
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= ZI - Hi(x[ + $0^0) - Si 

= 1^1 - Hi$o/^0 - Si 

= 1^1-f C}si + DI/XQ 

where 

c| = connection of in at t^ 

Dj = connection of /Uq in t^ 

The censored state estimate is formed with the prior censored estimate and 

censored residual. 

x; = (x^r + Ki.,; 

= x^ + $0^0 + 1^1(^1 ~ Hi$0^0 " Si) 

= x^ + + (I - KiHi)#o/^0 

= ±1+ a}si + Bi^o 

where 

A2 = connection of in at t^ 

= connection of fj,o in x^ at t^ 

This process is repeated at the next step and provides an understanding of the 

recursive nature of the censored filter matrices. The censored residual at this step 

IS 

^^2 ~ ^2 " H2(x2 - S2 
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= Z2 - H2(#ixi + + $iBi/xo) - S2 

= Z2 - H2X2 - H2#IA}SI - S2 -

= 2^2 + ^2®! ^2®2 + 

where 

C2 = connection of in v>^ at t2 

C2 = connection of S2 in at t2 

D2 = connection of /l/q in at t2 

The censored state estimate at this step is 

x§ = (xgr+Kg,/^ 

= (X2 + #IA}si + $iBi/io) 

+ 1^2(22 - H2X2 - H2$iA|S]^ - H2$IBI;UO - S2) 

= X2 + K2(Z2 - H2X2 ) 

+ (I - K2H2)$I A|si - K2S2 + (I - K2H2)^iBx/io 

= X2 + A2S2 + A2S2 + 62/^0 

where 

A2 = connection of in x^ at t2 

n 
A2 = connection of S2 in x^ t2 

B| = connection of ^0 in x^ at t2 

Using the above equations it is possible to identify the following recursive equa­
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tions, where k indicates the kth step within a window of size N, and j = 1, 2, • • •, k. 

4 = ( """ i 
( (I-KkHk)«k-lAi-l j < k 

g ^ , (I-KIHi)#O k = 1 

( I - k > 1 

-I j = k 

-Hk^k-lA{_i j < k 

— k = 1 

k > 1 

The censored filter estimates and residuals can be calculated at any step from 

the state estimates and residuals from the Kalman filter by using the following 

equations. The censoring is performed with the S|^ sequence. 

k 
4 = ^k + E 

j = l 

k 
^k = It + E ^k®j ^k/^0 

j=l 

This process makes it possible to obtain a filter estimate and the corresponding 

residuals which are censored starting from j steps into the past. As j increases, the 

number of matrices which must be saved grows quickly. It is convenient to limit the 

process to a reasonable size N. At the end of the Nth step, the initial condition /iq 

is redefined as shown below and the process is then repeated. 

k 
(^o)new = E ̂ k^j + B]^/io 

j=l 
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12. APPENDIX D. COMPUTER SOURCE CODE 

IMPLICIT REAL*8 (A-H,0-Z) 

COMMON /CI/ SOL,RE,PI 
REAL*8 SOL,RE,PI 

C 

COMMON /C2/ H,PHI,PHITR,P,q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEN,XTRUED 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,QTRUE,NULLE 

REAL*8 H(9,9),PHIC9,9),PHITR(9,9),P(9,9),Q(9,9) 

REAL*8 RT,RF,ZN(9,1),ZD(9,1),W(44,1),V(44,1),XHAT(9,l) 

REAL*8 XTRUEN(44,1),XTRUED(44,1),WN0IS(44,1200),VMOIS(9,1200) 

REAL*8 HTRUE(44,44),PHITRU(44,44),QTRUE(44,44),NULLB(44,44) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MrtXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NO SA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,MRXD,MRZ,NRZ,HOSA 

C 

COMMON /C4/ ALPHA,GZERO,BETA,PHYZ,THETA,RS,HDPLMT 

REAL*8 ALPHA(24),GZER0(24) 

REAL*8 BETA.PHYZ,THETA,RS,HDPLMT 

C 

COMMON /C5/ XACTN,XACTD,XETRAJ,PTRAJ,XDTRAJ,PDTRAJ 

REAL*8 XACTN(44,1200),XACTD(8,1200),XETRAJ(8,1200) 

REAL*8 PTRAJ(8,1200),XDTRAJ(8,1200),PDTRAJ(8,1200) 

C 

COMMON /C6/ A,B,C,D,U,AT,BT,UT 

REAL*8 A(9,9,10,10),B(9,9,10),C(9,9,10,10),D(9,9,10),U(9,1) 

REAL*8 AT(9,9,10,10),BT(9,9,10),UT(9,1) 
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COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 
COMMON /C8/ NERRON,NERROF,MHYPON,NWIHDW,NWINC,NWSIZE,HCOAST, 

1 NONOIS,NPE,WC2INC,NC2SZ,NC20N,NGE0M,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,NDOF,NDFSTP,NDISAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVEO ,1200) , VBLK(9 ,10) , CHI (120) , SATCHI (9) , STPCHI (10) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATC0N(9) 

INTEGER ND0F(120),NDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 

C 

COMMON /CIO/ XDET,PDET,QDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,qY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),QDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,1),HY(9,2),PHIY(9,2),PHIYT(9,2),qY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

COMMON /Cll/ SASCFT,DSEED,READIC,ISEED 

REAL*8 SASCFT(4),DSEED,READIC 

INTEGER ISEED 

C 

COMMON /C12/ CHITBL,TBLSIZ,TBLDOF,LOCSIZ 

REAL*8 CHITBL(66,54),TBLSIZ(54),TBLDOF(66),L0CSIZ(4) 

C 

COMMON /C13/ SMAT,PWOFFN,PWOFFD 

REAL*8 SMAT(9,10),PWOFFN(10),PWOFFD(10) 

C 

COMMON /C14/ PERIOD,BNKANG,ACCEL,RADFRQ,VELCTY,NTURON,NTUROF 

REAL*8 PERIOD,BNKANG,ACCEL,RADFRQ,VELCTY 

INTEGER NTURON.NTUROF 

C 

C SOL,RE,PI = SPEED OF LIGHT,MEAN RADIUS OF EARTH,AND PIE 

C H=MEASUREMENT CONNECTION TO STATE VECTOR MATRIX 

C PHI=STATE TRANSITION MATRIX 

C PHITR=TRANSPOSE OF PHI 

C P=ERROR COVARIANCE MATRIX 
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C q=COVARIAWCE STRUCTURE OF THE W VECTOR 

C R=COVARIAÏÏCE STRUCTURE OF THE V VECTOR 

C Z=MEASUREMENT VECTOR 

C W=DRIVEN RESPONSE VECTOR 

C V=MEASUREMENT NOISE VECTOR 

C XHAT=KALMAM FILTER STATE VECTOR ESTIMATE 

C XTRUE=TRUE STATE VECTOR WHICH IS GENERATED 

C WNOIS=TIME PROFILE OF THE W INPUT VECTOR, THIS MATRIX IS 

C GENERATED IN SUBROUTINE SETUP. EACH COLUMN IS THE 

C W VECTOR AT A CERTAIN TIME STEP. THE NUMBER OF COLUMNS 

C OF THIS ARRAY IS NSTEPS. 

C VNOISE=TIME PROFILE OF THE MEASUREMENT NOISE. THIS ARRAY 

C IS IN THE SAME FORM AS WNOISE. 

C TIME=CURRENT FILTER TIME 

C DELTAT=SAMPLING INTERVAL IN SECONDS 

C NSTEPS=THE NUMBER OF RECURSIVE STEPS TO BE PERFORMED. 

C ALPHA= ANGLE OF ASCENDING NODE FOR A PARTICULAR SATELLITE. 

C GZERO= THE INITIAL ANGLE OF THE SATELLITE IN ITS ORBIT. 

C BETA= INCLINATION ANGLE OF SATELLITE ORBIT WITH RESPECT 

C TO THE EQUATOR. SAME FOR EACH SATELLITE. 

C PHYZ=INITIAL LONGITUDE OF THE VEHICLE 

C THETA=LATITUDE OF THE VEHICLE 

C RS=ORBIT RADIUS OF THE SATELLITE ASSUMING A CIRCULAR ORBIT. 

C XACT=ARRAY WHICH IS USED TO SAVE THE PROFILE OF THE TRUE 

C STATE VECTOR. IT IS ARRANGED WITH EACH COLUMN 

C CONTAINING THE STATE VECTOR AT A CERTAIN TIME STEP. 

C THE NUMBER OF COLUMNS IS THE NUMBER OF RECURSIVE STEPS. 

C XETRAJ=ESTIMATE STATE VECTOR TRAJECTOR. 

C PTRAJ=THE ELEMENTS OF THE MAIN DIAGONAL OF THE P MATRIX 

C ARE SAVED IN THIS ARRAY. THE SQUARE ROOTS ARE SAVED. 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCC MAIN PROGRAM CCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
S0L=2.997925D8 
RE=6378.388D3 

PI=3.14159265358793D0 

C 
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CALL SATUSE 

CALL SETUP 

NWINDW=0 

NWINC=1 

C 

C INITIAL MATRICES & DRIVING FUNCTIONS ARE CALCULATED IN SETUP. 

C THE RECURSIVE KALMAN FILTER IS AS FOLLOWS: 

G 

DO 20 K=1,NSTEPS 

C 

TIME=DELTAT*(FLOAT(K-l)) 

IF (K.GE.NHYPON) WWINDW=NWINDW+1 

CALL DIRCOS(K) 

CALL MEASUR(K) 

CALL UPDATE(K) 

CALL STORE(K) 

IF (NWINDW.GE.NWSIZE) THEN 

CALL HYPOTH(K) 

NWINDW=0 

NWINC=NWINC + 1 

ENDIF 

CALL PROJEC(K) 

C 

20 CONTINUE 

C 

C THE FOLLOWING SUBROUTINE CALLS ARE FOR OUTPUT PURPOSES: 
C 

C PLOT CALLS SIMPLOTER 

C OUTXP CAN PUT XHAT AND P DIAGONAL ELEMENTS IN A FILE 

C STEADY GIVES XTRUE.XHAT, AND P AT THE LAST STEP 

C THE EXECUTION OF THESE SUBROUTINES IS CONTROLLED BY THE 

C STATUS OF CERTAIN INPUT VARIABLES. 
C 

CALL SIGMA(NSTEPS,DELTAT) 

CALL PLOT 

CALL C20UT 

CALL OUTXP 

CALL STEADV 

C 
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STOP 

END 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
ccccc 
ccccc 
ccccc 

ccccc 
ccccc 
ccccc 

ccccc 
ccccc 
ccccc 
ccccc 
ccccc 
ccccc 

ccccc 
ccccc 
ccccc 
ccccc 
ccccc 
ccccc 
ccccc 

END OF MAIN PROGRAM 

ccccc 
ccccc 
ccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

THE REST OF THE PROGRAM CONTAINS SUBROUTINES 

ccccc 
CCCCC 

ccccc 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

THERE ARE THREE SETS OF SUBROUTINES; 

MATRIX SUBROUTINES 

KALMAN FILTER SUBROUTINES 

OUTPUT SUBROUTINES 

ccccc 
ccccc 
ccccc 
ccccc 
ccccc 
ccccc 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

MATRIX SUBROUTINES CONTAINED ARE: 

MATRIX MULTIPLY,TRANSPOSE, AND INVERSE 

SUM,HALF SUM,DIFFERENCE AMD HALF DIFFERENCE 

MULTBY,SCALEP,ADDON,SUBOUT 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c 
SUBROUTINE MULT(MR,1RSYM,RESULT,IPTEST,XLEFT,NR,LC,RIGHT, 

1 IRR,NC) 

C 

C THIS SUBROUTINE CALCULATES THE PRODUCT OF TWO MATRICES. 

C THE CONTROL VARIABLE IPTEST IS SET AT ONE IN THE CALLING 

C STATEMENT IF THE XLEFT MATRIX IS A SYMETRIC MATRIX. IN 

C THIS CASE, WHEN AN ELEMENT IS USED FROM THE LEFT MATRIX, 

C ONLY THE UPPER TRIANGULAR PORTION WILL BE USED. THIS MEANS 

C WHEN A REFERENCE IS MADE TO AM ELEMENT IN THE LOWER TRI-

C ANGLULAR PART, THE ELEMENT TO BE USED IS FOUND BY LOCATING 

C THE CORRESPONDING ELEMENT IN THE UPPER TRIANGLE. THIS ALLOWS 
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C FOR THE MULTIPLICATION OF THE P MATRIX WHICH MUST REMAIN 

C SYMETRIC. THE P MATRIX ALWAYS APPEARS IN THE LEFT SIDE OF THE 

C MULTIPLY. A CHECK IS ALSO MADE TO LOCATE ZEROS IN A MATRIX 

C TO AVOID PERFORMING WASTEFULL MULTIPLIES BY ZERO. 
C 

IMPLICIT REAL*8 (A-H,0-Z) 

INTEGER MR,1RSYM,IPTEST,NR,LC,IRR,NC 

REAL*8 RESULT(MR,NC),XLEFT(MR,LC),RIGHT(MR,NC) 

IF (LC .NE. IRR) THEN 

WRITE (6,*) 'MATRIX MULTIPLY ERROR' 

GO TO 40 

ELSE 

DO 10 M=1,NR 

DO 20 N=1,NC 

SUM=0.0D0 

DO 30 J=1,LC 

IF ((IPTEST.EQ.l).AND.(M.GT.J)) THEN 

IF ((XLEFT(J,M).NE.0.0).AND.(RIGHT(J,M).NE.0.0)) 

1 SUM=SUM+XLEFT(J,M)*RIGHT(J,N) 

ELSE 

IF ((XLEFT(M,J).NE.0.0).AND.(RIGHT(J,M).NE.0.0)) 

1 SUM=SUM+XLEFT(M,J)*RIGHT(J,N) 

EWDIF 

30 CONTINUE 

RESULT(M,N)=SUM 

20 CONTINUE 

10 CONTINUE 

IF (IRSYM.EQ.l) THEN 
DO 50 INC=2,NC 

NRST0P=INC-1 

DO 50 INR=1,NRST0P 

AVE=(RESULT(INR,INC)+RESULT(INC,INR))/2 . DO 

RESULT(INR,INC)=AVE 

RESULT(INC,INR)=AVE 

50 CONTINUE 

ENDIF 

40 CONTINUE 

ENDIF 

RETURN 
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END 

C 
SUBROUTINE SCALEP(MR,RESULT,NR,RIGHT) 

C 

C THIS SUBROUTINE CALCULATES THE PRODUCT OF TWO MATRICES. 

C THE RESULT IS THE PRIOR LEFT TIMES THE RIGHT. ONLY THE 

C UPPER TRIANGULAR PORTION IS CALCULATED. 

C WHEN AN ELEMENT IS USED FROM THE LEFT MATRIX, 

C ONLY THE UPPER TRIANGULAR PORTION WILL BE USED. THIS MEANS 

C WHEN A REFERENCE IS MADE TO AN ELEMENT IN THE LOWER TRI-

C ANGLULAR PART, THE ELEMENT TO BE USED IS FOUND BY LOCATING 

C THE CORRESPONDING ELEMENT IN THE UPPER TRIANGLE. THIS ALLOWS 

C FOR THE MULTIPLICATION OF THE P MATRIX WHICH MUST REMAIN 

C SYMETRIC. THE P MATRIX ALWAYS APPEARS IN THE LEFT SIDE OF THE 

C MULTIPLY. A CHECK IS ALSO MADE TO LOCATE ZEROS IN A MATRIX 

C TO AVOID PERFORMING WASTEFULL MULTIPLIES BY ZERO. 

C 

IMPLICIT REAL*8 (A-H.O-Z) 

INTEGER MR,NR 

REAL*8 RESULT(MR,NR),RIGHT(MR,NR) 

REAL*8 XLEFT(44,44) 
DO 5 J=1,NR 

DO 5 1=1,J 

XLEFT(I,J)=RESULT(I,J) 

5 CONTINUE 
DO 10 M=1,NR 

DO 20 N=M,NR 

SUM=O.ODO 

DO 30 J=1,NR 

IF (M.GT.J) THEN 

IF ((XLEFT(J,M).NE.0.0).AND.(RIGHT(J,W).NE.0.0)) 

1 SUM=SUM+XLEFT(J,M)*RIGHT(J,W) 

ELSE 

IF (CXLEFT(M,J).NE.0.0).AND.(RIGHT(J,N).NE.0.0)) 

1 SUM=SUM+XLEFT(M,J)*RIGHT(J,N) 

ENDIF 

30 CONTINUE 

RESULT(M,N)=SUM 

20 CONTINUE 
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10 CONTINUE 

RETURN 

END 

C 

SUBROUTINE MULTBY(MR,XLEFT,LNR,LNC,RIGHT,NRR.NCR) 

C 

C THIS SUBROUTINE CALCULATES THE PRODUCT OF TWO MATRICES. 

C THE RESULT IS THE PRIOR RIGHT SCALED UP BY THE LEFT. 

C A CHECK IS ALSO MADE TO LOCATE ZEROS IN A MATRIX 

C TO AVOID PERFORMING WASTEFULL MULTIPLIES BY ZERO. 

C 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

INTEGER MR,NRR,NCR,LNR,LNC 

REAL»8 XLEFT(MR,LNC).RIGHT(MR,NCR) 

REAL*8 RESULT(44,44) 

IF (LNC.NE.NRR) THEN 

WRITE(6,*)'MATRIX MULTIPLY ERROR IN MULTBY' 

GO TO 100 

ELSE 

DO 10 M=1,LNR 

DO 20 N=1,NCR 

SUM=0.0D0 

DO 30 J=1,NRR 

IF ((XLEFT(M,J).NE.0.0).AND.(RIGHT(J,N).NE.0.0)) 

1 SUM=SUM+XLEFT(M,J)*RIGHT(J,N) 

30 CONTINUE 

RESULT(M,N)=SUM 

20 CONTINUE 

10 CONTINUE 
DO 40 NC=1,NCR 

DO 40 NR=1,LNR 

RIGHT(NR,NC)=RESULT(NR,NC) 

40 CONTINUE 

ENDIF 

100 CONTINUE 

RETURN 

END 

C 
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SUBROUTINE TRANSP(MR,RESULT,NEWR,NEWC,A,NR,NC) 

C 
C THE TRANSPOSE OF A MATRIX IS PERFORMED IN THIS 

C SUBROUTINE. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 RESULT(MR,NEWC) ,A(MR,IIC) 

DO 10 M=1,WEWR 

DO 10 N=1,MEWC 

RESULT(M,N)=A(N,M) 

10 CONTINUE 

RETURN 

END 

C 

SUBROUTINE INVERT(MR,IRSYM,A,N,XKEEP) 

C 

C THE INVERSE OF A MATRIX IS PERFORMED USING THE 

C SHIPLEY-COLEMAN INVERSION ROUTINE. IT USES GAUSSIAN 

C ELIMINATION WITH PIVOTING. THE ROUTINE ONLY WORKS FOR 

C MATRICES WHICH HAVE NON-ZERO MAIN DIAGONAL ELEMENTS AND 

C HALTS EXECUTION IF SUCH A CONDITION IS ENCOUNTERED. 

C FOR THE KALMAN FILTER, THE INVERSE IS OF THE HPH+R MATRIX 

C WHICH ALWAYS HAS A NON-ZERO MAIN DIAGONAL. HENSE, THE 

C INVERSE ROUTINE WILL ALWAYS WORK FOR THIS CASE. HOWEVER, 

C THIS ROUTINE WILL NOT WORK FOR A GENERAL NON-SINGULAR MATRIX 

C IF IS HAS A MAIN DIAGONAL ELEMENT WHICH IS ZERO. 

C THE RESULT IS MATRIX A. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 A(MR,N),XKEEP(MR,N) 
DO 10 NC=1,N 

DO 10 M=1,N 

A(M,NC)=XKEEP(M,NC) 

10 CONTINUE 

DO 5 IP=1,N 

AD=A(IP,IP) 

IF (DABS(AD).GT.l.OD-38) GO TO 1 

WRITE (6,*) 'MATRIX HAS A ZERO IN THE MAIN DIAG.' 

STOP 
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1 AD=-1.0D0/AD 

A(IP,IP)=AD 

DO 3 IR=1,M 

IF (IR.EQ.IP) GO TO 3 

AT=AD*A(IR,IP) 

DO 2 IC=1,N 

IF (IC.EQ.IP) GO TO 2 

A(IR,IC)=A(IR,IC)+AT*A(IP,IC) 

2 CONTINUE 

3 CONTINUE 
DO 4 1=1,N 

IF (I.EQ.IP) GO TO 4 

A(I,IP)=AD*A(I,IP) 

A(IP,I)=AD*A(IP,I) 

4 CONTINUE 

5 CONTINUE 
DO 6 IC=1,N 

DO 6 IR=1,N 

6 A(IR,IC)=-A(IR,IC) 

IF (IRSYM.EQ.l) THEN 
DO 50 INC=2,N 

NRST0P=INC-1 

DO 50 INR=1,NRST0P 

AVE=(A(INR,INC)+A(INC,INR))/2.D0 

A(INR,INC)=AVE 

A(INC,INR)=AVE 

50 CONTINUE 

ENDIF 

RETURN 

END 

C 

SUBROUTINE SUMHAF(MR,RESULT,NR,NC,A,B) 

C 

G THE UPPER TRIANGULAR PORTION TO TWO MATRICES ARE 

C ADDED AND STORED IN RESULT. THIS SAVE TIME IN THE 

C COMPUTATION OF THE SYMETRIC P MATRIX IN WHICH ONLY 

C ONE PORTION OF THE MATRIX NEED BE CALCULATED. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 
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REAL*8 A(MR,NO,B(MR,NC),RESULT(MR,NC) 

DO 10 N=1,MC 

DO 10 M=1,N 

RESULT(M,W)=A(M,N)+B(M,N) 

10 CONTINUE 

RETURN 

END 

C 

SUBROUTINE SCALE(MR,RESULT,NR,NC,SCALAR) 

C 

C THE RESULT IS THE PREVIOUS RESULT WITH EACH ELEMENT 

C MULTIPLIED BY SCALAR. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 RESULT(MR,NC).SCALAR 
DO 10 N=1,NC 

DO 10 M=1,NR 

RESULT(M,N)=RESULT(M,N)*SCALAR 

10 CONTINUE 

RETURN 

END 

C 

SUBROUTINE SUM(MR,IRSYM,RESULT,NR,NC,A,B) 

C 

C THE SUM OF TWO MATRICES IS FOUND AND IS STORED 

C IN THE MATRIX RESULT. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 A(MR,NC),B(MR,NC),RESULT(MR,NC) 

DO 10 N=1,NC 

DO 10 M=1,NR 

RESULT(M,N)=A(M,N)+B(M,N) 

10 CONTINUE 

IF (IRSYM.EQ.l) THEN 

DO 50 IMC=2,NC 

NRSTOP=INC-i 

DO 50 INR=1,NRST0P 

AVE=(RESULT(INR,INC)+RESULT(INC,INR))/2.DO 

RESULT(INR,INC)=AVE 



www.manaraa.com

180 

RESULT(INC,INR)=AVE 

50 CONTINUE 

ENDIF 

RETURN 

END 

C 

SUBROUTINE DIFHAF(MR,RESULT,NR,WC,A,B) 

C 

C THE UPPER TRIANGULAR PORTION TO TWO MATRICES ARE 

C SUBTRACTED AND STORED IN RESULT. THIS SAVE TIME IN THE 

C COMPUTATION OF THE SYMETRIC P MATRIX IN WHICH ONLY 

C ONE PORTION OF THE MATRIX NEED BE CALCULATED. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 A(MR,NC),B(MR,NC).RESULT(MR,NC) 
DO 10 N=1,NC 

DO 10 M=1,N 

RESULT(M,N)=A(M,n)-B(M,N) 

10 CONTINUE 

RETURN 

END 

C 

SUBROUTINE HSUBOT(MR,RESULT,NR,NC,A) 

C 

C THE UPPER TRIANGULAR PORTION TO TWO MATRICES ARE 

C SUBTRACTED AND STORED IN RESULT. THIS SAVE TIME IN THE 

C COMPUTATION OF THE SYMETRIC P MATRIX IN WHICH ONLY 

C ONE PORTION OF THE MATRIX NEED BE CALCULATED. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 A(MR,NC).RESULT(MR,NC) 
DO 10 N=1,NC 

DO 10 M=1,M 

RESULT(M,N)=RESULT(M,N)-A(M,N) 

10 CONTINUE 

RETURN 

END 

C 
SUBROUTINE DIFF(MR,IRSYM.RESULT,NR,NC.A.B) 
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C 

C THE DIFFERENCE OF TWO MATRICES IS CALCULATED AMD 

C STORED IN THE MATRIX RESULT. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 A(MR,NC),B(MR,NC).RESULT(MR,NC) 

DO 10 N=1,NC 

DO 10 M=1,NR 

RESULT(M,N)=A(M,N)-B(M,N) 

10 CONTINUE 

IF (IRSYM.EQ.l) THEN 

DO 50 INC=2,NC 

NRST0P=INC-1 

DO 50 INR=1,NRST0P 

AVE=(RESULT(INR,INC)+RESULT(INC,INR))/2.D0 

RESULT(INR,INC)=AVE 

RESULT(INC,INR)=AVE 

50 CONTINUE 

ENDIF 

RETURN 

END 

C 

SUBROUTINE ADDON(MR,RESULT,NR,NC,A) 
C 

C THE A MATRIX IS ADDED ONTO THE INCOMING RESULT 

C MATRIX. THUS THE RESULT MATRIX IS INCREMENTED WITH A. 
C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 A(MR,NC),RESULT(MR,NC) 

DO 10 N=1,NC 

DO 10 M=1,NR 

RESULT(M,M)=RESULT(M,M) + A(M,N) 

10 CONTINUE 

RETURN 

END 

C 

SUBROUTINE SUBOUT(MR,RESULT,NR,NC,A) 

C 

C THE A MATRIX IS SUBTRACTED OUT OF THE INCOMING RESULT 
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C MATRIX. THUS THE RESULT MATRIX IS DECREMENTED WITH A. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

REAL*8 A(MR,NC),RESULT(MR,MC) 
DO 10 N=1,NC 

DO 10 M=1,NR 

RESULT(M,N)=RESULT(M,N) - A(M,N) 

10 CONTINUE 

RETURN 

END 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCC CCCCC 

CCCCC END OF MATRIX SUBROUTINES CCCCC 

CCCCC CCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCC CCCCC 

CCCCC KALMAN FILTER SUBROUTINES ARE AS FOLLOWS: CCCCC 

CCCCC CCCCC 

CCCCC SATUSE,SETUP,DIRCOS.MEASUR,UPDATE,PROJECT CCCCC 

CCCCC CCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c 
SUBROUTINE SATUSE 

c 
IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /CI/ SOL,RE,PI 

REAL*8 SOL,RE,PI 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(IO),NSATID(9) 

INTEGER MRXT,MRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /C4/ ALPHA,GZERO,BETA,PHYZ,THETA,RS,HDPLMT 

REAL*8 ALPHA(24),GZER0C24) 

REAL*8 BETA,PHYZ,THETA,RS,HDPLMT 
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C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDEWT(9,9) 

C 

COMMON /C8/ HERRON,IIERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 
1 NONOIS,NPE,NC2INC.NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,NHYPQN,MWINDW,MWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,MGEOM,NGMSZ,NGON,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCOM,HDOF,NDFSTP,NDISAT,MDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(10) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATC0N(9) 

INTEGER NDOF(120),NDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 

C 

COMMON /C12/ CHITBL,TBLSIZ,TBLDOF,LOCSIZ 

REAL*8 CHITBL(66,54),TBLSIZ(54),TBLD0F(66),L0CSIZ(4) 

C 

COMMON /C14/ PERIOD,BNKANG,ACCEL,RADFRQ,VELCTY,NTURON,NTUROF 

REAL*8 PERIOD,BNKANG,ACCEL,RADFRQ,VELCTY 

INTEGER NTURON,NTUROF 

C 

REAL*8 SATGE0(2,24) 

C 

1 FORMAT(/1X,'*****»********** 24 SATELLITE CONSTELLATION' 
1 ,' USED IN SIMULATION *****************') 

WRITE(6,2) 

WRITE(6,1) 

2 F0RMAT(/1X,'****RESULTS**** FROM: COMNEC.WTF VERSI0N=1.6', 

1 ' MAY 29,1988') 

C 
DEGINC=O.DO 

DO 10 M=l,21,4 

DO 20 N=l,4 

SATGEO(1,M+N-1)=DEGINC 

20 CONTINUE 

DEGINC=DEGINC + 60.DO 

10 CONTINUE 

C 
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INC15=0 

DO 30 M=l,21,4 

DEGINC=FLOAT(INC15)*15.DO 

DO 35 N=l,4 

SATGE0(2,M+N-1)=DEGIMC + FL0AT(N-l)*9O.DO 

35 CONTINUE 

IWC15=INC15 + 1 

30 CONTINUE 

C 
DO 40 1=1,24 

ALPHA(I)=SATGE0(1,I) 

GZER0(I)=SATGE0(2,I) 

40 CONTINUE 

C 

READ(5,*)OFFSET 

4 FORMATC/IX,'OFFSET FROM 0.0 GPS TIME IN SECONDS IS',F10.2) 

WRITE(6,4)0FFSET 

C 

ADDDEG=0FFSET*360.DO/(43200.D0*0.99726957D0) 

C 

DO 50 1=1,24 

GZERO(I)=GZERO(I) + ADDDEG 

50 CONTINUE 

C 

DEGC0N=PI/180.D0 

C 

READ(5,*)PHYZ,THETA 

7 F0RMAT(/1X,'INITIAL VEHICLE POSITION/5X,'EAST LONGITUDE:', 

1 F10.2,/5X,'NORTH LATITUDE:',FIO.2) 

C 

WRITE(6,7)PHYZ,THETA 

PHYZ=PHYZ + ADDDEG/2.D0 

C 

READ(5,*)NTURON,NTUROF 

READ(5,*)PERIOD,BNKANG 

C 

C NOW CALCULATE SOME PARAMETERS ABOUT THE VEHICLE TURN 

C 

ACCEL=9.81*DTAN(BNKANG*DEGC0N) 
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RADFRQ=2*PI/PERI0D 
RADIUS=ACCEL/RADFRq**2 
VELCTY=RADFRq *RADIÏÏS 

FORMAT(/IX,'PARAMETERS OF THE VEHICLE DYNAMICS') 

FORMAT(5X,'THE TIME TO COMPLETE THE TURN IS',F10.2,' s', 

1 /5X,'THE TANGENTIAL VELOCITY IS ',F10.2,' m/s', 

2 /5X,'THE TURN RADIUS IS ',F10.2,' m', 

3 /5X,'THE BANK ANGLE IS ',F10.2,' degres 

4 /5X,'THE CENTRIPITAL ACCELERATION IS ',F10.2,' m/s/s' 

FORMAT(5X,'NTURON=',I4,2X,' NTUROF=',14) 

IF (WTURON.EQ.l) THEN 

WRITE(6,3) 

WRITE(6,6)PERI0D,VELCTY,RADIUS,BNKANG,ACCEL 

WRITE(6,5)NTURON,NTUROF 

ENDIF 

RS=4.1644*RE 

BETA=55.D0*DEGC0N 

PHYZ=PHYZ*DEGCON 

THETA=THETA*DEGCON 

DO 60 1=1,24 

ALPHA(I)=DEGCON*ALPHA(I) 

GZERO(I)=DEGCQN*GZERO(I) 

CONTINUE 

READ(5,*)HDPLMT 

READ(5,*)NERRON,NERROF 

READ(5,*)NHYPON,NWSIZE,NALOUT 

READ(5,*)NC20H,NC2SZ 
READ(5,*)NGE0M,NGMSZ 
READ(5,*)NG0N,NGSZ 

READ(5,*)(L0CSIZ(I),1=1,4) 

READ(5,*)(BIAS(I),1=1,9),(SLOPE(I),1=1,9) 

F0RMAT(/1X,'**************** DETECTION PROBLEM PARAMETE' 
1 ,'RS ****************') 

FORMAT(/IX,'NERRON,NERROF ARE;',2(16,3X), 
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1 /IX,'NHYPOW.NWSIZE ARE:',2(16,31), 
2 /IX,'UC20N,NC2SZ ARE: ',2(I6,3X), 

3 /IX,'MGEOM,MGMSZ ARE: ',2(I6,3X), 

4 /IX,'NGON.NGSZ ARE: ',2(I6,3X)) 

43 FORMAT(/IX,'MAXIMUM HDOF FOR SUB-SOL :HDPLMT=',F10.3) 

WRITE(6,8) 

WRITE(6,9)MERRON,NERROF,NHYPON,NWSIZE,MC20N,MC2SZ, 

1 MGEOM,MGMSZ,MGOM,MGSZ 

WRITE(6,43)HDPLMT 

12 FORMAT(/IX,'THE SATELITTE CLOCK ERROR ' 

1 ,'BIAS AND SLOPE ARE:') 

WRITE(6,12) 

11 F0RMAT(/1X,9(F8.2,1X)) 

WRITE(6,11)(BIAS(I),1=1,9) 

WRITE(6,11)(SL0PE(I),I=1,9) 

C 

DO 47 1=1,9 

WBIAS(I)=BIAS(I) 

47 CONTINUE 

C 

RETURN 

END 

C 

SUBROUTINE SETUP 

C 

C THIS SUBROUTINE READS IN ALL CONSTANT TYPE DATA. IN ADDITION IT 

C PERFORMS TASKS SUCH AS COMPUTING INITIAL MATRICES WHICH ARE 

C THE STATE TRANSITION MATRIX,Q,R,THE SELECTIVE AVAILABILITY PART 

C OF THE H MATRIX AND THE INITIAL MATRICES X,XHAT, AND P MINUS. 

C AN EXTERNAL SUBROUTINE DRNNOA FROM THE IMSL IS ALSO CALLED 

C WHICH RETURNS NORMAL VARIATE VECTORS. THE NOISE SCALE FACTORS 

C ARE CALCULATED HERE TO SHAPE THE NORMAL PROCESSES INTO SEQUENCES 

C WITH THE CORRECT CORRELATION STRUCTURE AS REQUIRED BY Q. THE 

C RESULT IS THE W VECTOR PROFILE FOR THE ENTIRE SIMULATION. 

C THE MEASUREMENT HOISE VECTOR V IS ALSO GENERATED SIMULARLY. 

C STARTING ANGLES FOR THE SATELLITE AND VEHICLE STARTING POSITIONS 

C ARE ALSO CALCULATED IN RADIANS FOR USE IN THE DIRECTION COSINES 

C SUBROUTINE. THE STATISTICS OF THE W AND V VECTORS ARE CALCULATED 

C AND ARE WRITTEN INTO THE DEVICE SIX FILE. THIS PROVIDES A CHECK 
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C OM THE NATURE OF THE DRIVING FUNCTIONS WHICH ARE GENERATED. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /CI/ SOL,RE,PI 

REAL*8 SOL,RE,PI 

C 

COMMON /C2/ H,PHI,PHITR,P,Q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEN,XTRUED 

1 ,WNOIS,VMOIS,HTRUE,PHITRU,QTRUE,NULLE 

REAL*8 H(9,9),PHI(9,9),PHITR(9,9),P(9,9),Q(9,9) 

REAL*8 RT,RF,ZW(9,1),ZD(9,1),W(44,l),V(44,1),XHAT(9,l) 

REAL*8 XTRUEN(44,1),XTRUED(44,1),WN0IS(44,1200),VN0IS(9,1200) 

REAL*8 HTRUE(44,44),PHITRU(44,44),QTRUE(44,44),NULLE(44,44) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /C4/ ALPHA,GZERO,BETA,PHYZ,THETA,RS,HDPLMT 

REAL*8 BETA,PHYZ,THETA,RS,HDPLMT 

REAL*8 ALPHA(24),GZER0(24) 

C 

COMMON /C6/ A,B,C,D,U,AT,ET,UT 

REAL*8 A(9,9,10,10),8(9,9,10),C(9,9,10,10),D(9,9,10),U(9,1) 

REAL*8 AT(9,9,10,10),BT(9,9,10),UT(9,1) 

C 

COMMON /C7/ BIAS,WEIAS,SLOPE,NULL,IDENT 

REAL*8 EIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 

COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 

1 N0N0IS,NPE,NC2INC,NC2SZ,NC20N,NGE0M,NGMSZ,NG0N,MGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER N0N0IS,NPE,NC2INC,NC2SZ,NC20N,NGE0M,NGMSZ,NG0N,NGSZ 

C 
COMMON /C9/ VSAVE,VELK,CHI,SATCHI,STPCHI,VELKA,VARINV,RESVAR, 

1 SATCON,NDOF,NDFSTP,NDlSAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VELK(9,10),CHI(120),SATCHI(9),STPCHI(10) 
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REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATC0N(9) 

INTEGER MDQF(120),NDFSTP(10),ND1SAT(9),ND1STP(10),MOERR,MALOUT 

C 
COMMON /CIO/ XDET,PDET,QDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,QY 

1 .PHID.PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),qDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9.1),ZY(9,1),HY(9,2),PHIY(9,2),PHIYT(9,2),QY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

COMMON /Cll/ SASCFT,DSEED,READIC,ISEED 

REAL*8 SASCFT(4),DSEED,READIC 

INTEGER ISEED 

C 

COMMON /C12/ CHITBL,TBLSIZ,TBLDOF,LOCSIZ 

REAL*8 CHITBL(66,54),TBLSIZ(54),TBLD0F(66),L0CSIZ(4) 

C 

COMMON /C14/ PERIOD,BNKANG,ACCEL,RADFRQ.VELCTY.NTURON.MTUROF 

REAL*8 PERIOD,BMKANG,ACCEL,RADFRQ,VELCTY 

INTEGER MTURON.NTUROF 

C 

REAL*8 GN0ISE(53,1501),WNSF(36),PINPUT 

REAL*8 GAUS(lOOl) 

C REAL*4 GAUS(lOOl) 

C 

C THE PARAMETERS OF THE FILTER ARE READ FROM AN INPUT FILE. 
C VARIABLES : 

C DELTAT:SAMPLING INTERVAL IN SECONDS 

C NSTEPS:NUMBER OF RECURSIVE STEPS TO BE PERFORMED 

C WO:UNDAMPED NATURAL FREQUENCY OF THE MATCHETT PROCESS 

C BHARM:INVERSE TIME CONSTANT OF MATCHETT PROCESS 

C WNPSD4:CORRESPONDS TO Q SUB C IN MATCHETT REPORT, 

C THIS IS THE WHITE NOISE POWER SPECTRAL DENSITY 

C AMPLITUDE OF THE DRIVING FUNCTION OF THE PROCESS. 

C BMARK: INVERSE TIME CONSTANT OF THE MARKOV PROCESS 

C SIGMAS:SIGMA SQUARED,VARIANCE OF MARKOV PROCESS 

C WNPSDl:SPECTRAL AMPLITUDE WHICH DRIVES ACCELERATION ERROR 

C WNPSD2:SPECTRAL AMP. OF LEFTMOST INTEGRATOR IN CLOCK MODEL 

C WNPSD3:SPECTRAL AMP. OF NOISE WHICH ENTERS BETWEEN INTEGRATORS 

C OF THE CLOCK MODEL 
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C R(l):VARIANCE OF MEASUREMENT NOISE FOR EACH OF THE 

C PSEUDORANGE MEASUREMENTS 

C PINPUT:CONTROL VARIABLE WHICH SPECIFIES WHETHER OR NOT 

C INITIAL XTRUE.XHAT, AND P SHOULD BE READ FROM 

C AN EXTERNAL DATA FILE. 

C 

READ(5,*)DELTAT,NSTEPS 

READ(5,*)W0M1,BHARM1,WNPSD4 

READ(5,*)W0M2,BHARM2,WNPSD5 

READ(5,*)WNPSDT,WNPSDF 

READ(5,*)PSDTR2,PSDTR3 

READ(5,*)WNPSD2,WNPSD3,BTA 

READ(5,*)PINPUT,NXTO,NXDEXT 

READ(5,*)N0STAT,N0SA,W0N0IS,NPE 

C 

READIC=PINPUT 

C 

IF (NOSA.EQ.l) THEN 
NRXT=8 

ELSE 
NRXT=44 

ENDIF 

C 
MRZ=9 

NRZ=9 

MRXT=44 

MRXH=9 

NRXH=8 

NRXD=8 

NSATS=9 

NC0AST=0 

C 

READ(5,*)RT 

READ(5,*)RF 

C 

C NOW READ THE CHI-SQUARE TABLE 

C 

READ(22,*)ND0FS,NSIZES 

READ(22,*)(TBLD0F(I),1=1.NDOFS) 
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READ(22,*)(TBLSIZ(I),I=l,iïSIZES) 

DO 44 I=1,ND0FS 

READ(22,*)(CHITBL(I,J),J=1,9) 

44 CONTINUE 
DO 41 I=1,ND0FS 

READ(22,*)(CHITBL(I,J),J=10,18) 

41 CONTINUE 

DO 42 I=1,ND0FS 

READ(22,*)(CHITBL(I,J),J=19,27) 

42 CONTINUE 

DO 43 I=1,ND0FS 

READ (22 , *) (CHITBLd , J) , J=28, 36) 

43 CONTINUE 

DO 45 I=1,ND0FS 

READ(22,*) (CHITBLd, J), J=37,45) 

45 CONTINUE 

DO 46 I=1,ND0FS 

READ (22 , *) (CHITBLd , J) , J=46, 54) 

46 CONTINUE 

914 F0RMAT(/1X,'TEST SIZE FOR ALL RESIDUALS IN WINDOW =',F9.6, 

1 /IX,'TEST SIZE FOR THE RESIDUALS AT OWE STEP =',F9.6, 

2 /IX,'TEST SIZE FOR RESIDUALS FROM ONE SATELLITE=',F9.6, 

3 /IX,'TEST SIZE FOR THE HORIZONTAL PLANE CHECK =',F9.6) 

WRITE(6,914)(TBLSIZ(L0CSIZ(I)),I=1,4) 

C 

7 F0RMAT(//1X,'**************** FILTER PARAMETERS', 
1 »******•**•******',/) 
WRITE(6,7) 

1 FORMATdX, 'DELTAT,NSTEPS',F10.3,2(2X,I5)) 

WRITE(6,1)DELTAT,NSTEPS 

2 FORMAT(/1X,'WOM1,BHARM1,WNPSD4: ' ,3(D10.3,IX)) 

WRITE(6,2)WOMl,BHARMl,WNPSD4 

3 F0RMAT(/1X.'W0M2,BHARM2,WNPSD5: ',3(D10.3,IX)) 

WRITE(6,3)W0M2,BHARM2,WNPSD5 

4 F0RMAT(/1X,'WNPSDT: PSD OF WHITE ACCELERATION NOISE IN TRUTH', 
1 '=',F10.4, 

2 /1X,'WNPSDF: PSD OF WHITE ACCELERATION NOISE FOR', 

3 /IX,' NAVIGATION AND DETECTION', 

4 ' FILTERS=',10X,F10.4) 
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WRITE(6,4)WNPSDT,WMPSDF 

8 FORMAT(/IX,'RTRUE :',2X,D12.5) 

13 FORMATC/IX,'R FILTER:',D12.5) 

C 

17 F0RMAT(/1X,'WNPSD2 AND WNPSD3 ARE THE PSDS OF THE LEFT AND', 

1 /IX,'RIGHT WHITE NOISE INPUTS IN THE CLOCK MODEL.', 

2 /IX,'WNPSD2=2*(PI**2)*H(-2) WNPSD3=H(0)/2', 

3 /IX,'IN THE TRUTH MODEL AND WAV. FILTER: WNPSD2=' ,D14.6, 

4 /IX,'IN THE TRUTH MODEL AND NAV. FILTER: WNPSD3=',D14.6, 

5/lX,'IN DETECTION FILTER MODEL: WNPSD2=',D14.6,3X,'BTA=',F6.4, 

6/lX,'IN DETECTION FILTER MODEL: WNPSD3=',D14.6) 

WRITE(6,17)PSDTR2,PSDTR3,WNPSD2,BTA,WNPSD3 

WRITE(6,8)RT 

WRITE(6,13)RF 

C 

31 F0RMAT(/1X,'N0STAT:N0 OUTPUT OF NOISE STAT= ',13, 

1 /IX,'NOSA:NO SELECTIVE AVAILABILITY= ',13, 

2 /IX,'NONOIS:NO PROCESS OR MEAS. N0ISE=',I3, 

3 /IX,'NXTO;SET XTRUE=0 AT START= ',13, 

4 /IX,'MXDEXT:SET XDET=XHAT AT START= ',13) 

WRITE(6,31)NOSTAT,NOSA,NONOIS,NXTO,NXDEXT 

C 

S0LSq=S0L**2 

WNPSD2=S0LSQ*WNPSD2 

WMPSD3=S0LSq*WNPSD3 

PSDTR2=S0LSQ*psDTR2 

PSDTR3=S0LSQ*PSDTR3 

C 

C INITIALIZE THE BIG MATRICES IN THE TRUTH MODEL TO ZERO 

C 

DO 21 N=1,NRXT 

XTRUEN(N,1)=O.DO 

XTRUED(N,1)=0.D0 

DO 21 M=1,NRXT 

HTRUE(M,N)=O.DO 

PHITRU(M,M)=O.DO 

qTRUE(M,N)=O.DO 

NULLB(M,N)=O.DO 

21 CONTINUE 
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C 
C INITIALIZE THE FILTER MODEL MATRICES TO ZERO 

C 

DO 10 N=1,MRXH 

XHATCN,1)=0.D0 

XDET(N,1)=0.D0 

U(N,1)=O.DO 

UT(N,1)=0.D0 

DO 10 M=1,MRXH 

P(M,N)=O.DO 

PDET(M,N)=O.DO 

Q(M,N)=O.DO 
PHI(M,M)=O.DO 

PHID(M,N)=O.DO 

WULL(M,M)=O.DO 

IDEriT(M,W)=O.DO 

10 CONTINUE 

C 

DO 22 I=1,MRXH 

IDENT(I,I)=1.D0 

22 CONTINUE 

C 

C LOAD THE CONSTANT PORTION OF THE H MATRIX 

C 

DO 15 M=1,NRZ 

DO 15 N=1,NRXH 

H(M,N)=O.DO 

15 CONTINUE 

C 

DO 19 1=1,NRZ 

H(I,7)=1.D0 

HTRUE(I,7)=1.D0 

19 CONTINUE 

C 

IF (NOSA.WE.l) THEN 
DO 12 1=1,NRZ 

HTRUE(I,5+4*I)=1.D0 

HTRUE(I,7+4*I)=1.D0 

12 CONTINUE 
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ENDIF 
C 
9 FORMATdX,'PINPUT',F6.1) 

WRITE(6,9)PINPUT 

IF (PINPUT.EQ.1.0) THEN 

14 F0RMAT(/1X,'INITIAL CONDITIONS ARE READ EXTERNALLY') 

WRITE(6,14) 

IF (NOSA.NE.l) THEN 

READ(21,*)(XTRUEN(J,1),J=l,44) 

ELSE 

READ(21,*)(XTRUEN(J,1),J=1,8) 

ENDIF 
READ(21,*)(XHAT(J,1),J=1,8) 

DO 5 N=l,8 

READ(21,*)(P(M,N),M=1,N) 

5 CONTINUE 

READ(21,*)(XTRUED(J,1),J=1,8) 

READ(21,*)(XDET(J,1),J=l,8) 

DO 6 N=l,8 

READ(21,*)(PDET(M,N),M=1,N) 

6 CONTINUE 

IF (NOSA.NE.l) THEN 
DO 57 J=9,44 

XTRUED(J,1)=XTRUEN(J,1) 

57 CONTINUE 

ENDIF 

ENDIF 

C 

IF (PINPUT.EQ.1.0) THEN 

C 

C SINCE WE ARE RUNNING OPEN LOOP HERE, RESET THE DETECTION 

C FILTER TO THE NAVIGATION FILTER. 

C 

CALL SUM(MRXT,0,XTRUED,NRXT,1,XTRUEN,NULL) 

C 

ENDIF 
C 

C FOR NUMERICAL REASONS, RESET THE TRUE ERROR TO THE ESTTIMATION 

C ERROR AND ZERO OUT THE STATE ESTIMATES. LEAVE THE CLOCK 
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C ERROR AND ESTIMATES UNCHANGED. 

C 
DO 950 1=1,6 

XTRUEN(1,1)=XTRUEM(1,1)-XHAT(1,1) 

XHAT(I,1)=0.D0 

XTRUED(1,1)=XTRUED(1,1)-XDET(1,1) 

XDET(I,1)=0.D0 

950 CONTINUE 

C 

IF (NXDEXT.EQ.l) THEN 

C 

C SET THE DETECTION FILTER COVARIANCE AND ESTIMATES AND TRUTH 

C EQUAL TO THOSE FROM THE NAVIGATION FILTER 

C 

CALL SUM(MRXH,0,XTRUED,NRXH,1,XTRUEN,NULL) 

CALL SUM(MRXH,0,XDET,NRXH,1,XHAT,NULL) 

CALL SUM(MRXH,0,PDET,NRXH,NRXH,P,NULL) 

C 

EKDIF 

C 

C FORM ELEMENTS OF TRANSITION MATRIX FOR THE 

C SELECTIVE AVAILABILITY STATES 

C 

IF (NOSA.NE.l) THEN 

DAMPM1=DEXP(-BHARM1*W0M1*DELTAT) 

DAMPM2=DEXP(-BHARM2*W0M2*DELTAT) 

W1M1=W0M1*DSQRT(1-BHARM1**2) 

W1M2=W0M2*DSQRT(1-BHARM2**2) 

B1W01=BHARM1*W0M1/W1M1 

B2W01=BHARM2*W0M2/W1M2 

ARG1=W1M1*DELTAT 

ARG2=W1M2*DELTAT 

PHI111=DAMPM1*(DCOS(ARG1)+B1W01*DSIN(ARG1)) 

PHI211=DAMPM2*(DCOS(ARG2)+B2W01*DSIN(ARG2)) 

PHI112=DAMPM1*DSIN(ARG1)/W1M1 

PHI212=DAMPM2*DSIN(ARG2)/W1M2 

PHI121=-(W0M1**2)*PHI112 

PHI221=-(W0M2**2)*PHI212 

PHI122=DAMPM1*(DCOS(ARG1)-B1W01*DSIN(ARG1)) 
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PHI222=DAMPM2*(DC0S(ARG2)-B2W01*DSIN(ARG2)) 

ENDIF 

C 
C LOAD THE STATE TRANSITION MATRIX 
C 

DO 40 1=1,8 

PHI(I,I)=1.DO 

PHITRU(I,I)=1.D0 

IF (M0D(I,2).EQ.l) THEN 

PHI(I,I+1)=DELTAT 

PHITRU(I,I+1)=DELTAT 

ENDIF 

40 CONTINUE 

C 

C MOW GET THE TRANSITION MATRIX FOR THE DETECTION FILTER 

C START WITH THE ONE FROM THE NAVIGATION FILTER. 

C 

CALL SUM(MRXH,0,PHID,NRXD,NRXD,PHI,NULL) 

C 

C NOW MODIFY JUST THE CLOCK ELEMENTS 

C 

IF (BTA.NE.0.0) THEM 

PHID(7,8)=(1.0/BTA)*(1.0 - DEXP(-BTA*DELTAT)) 

PHID(8,8)=DEXP(-BTA*DELTAT) 

ENDIF 

C 

C NOW GET PHID TRANSPOSE 

C 

CALL TRANSP(MRXH,PHIDTR,NRXD,NRXD,PHID,NRXD,NRXD) 

C 

IF (MOSA.EQ.l) GO TO 51 

IST0P=9 + 4*(NSATS-1) 

DO 50 I=9,IST0P,4 

PHITRU(I,I)=PHI111 

PHITRU(I,I+1)=PHI112 

PHITRU(I+1,I)=PHI121 

PHITRU(I+1,I+1)=PHI122 

50 CONTINUE 

C 
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IST0P=11 + 4*(NSATS-1) 

DO 60 I=11,IST0P,4 

PHITRU(I,I)=PHI211 

PHITRU(I,I+1)=PHI212 

PHITRU(I+1,I)=PHI221 

PHITRU(I+1,I+1)=PHI222 

60 CONTINUE 

51 CONTINUE 

C 

C GENERATE PHI TRANSPOSE 

C 

CALL TRANSP(MRXH,PHITR,MRXH,NRXH,PHI,NRXH,NRXH) 

C 

C THE STANDARD NORMAL VARIABLES ARE FOUND USING AN 

C EXTERNAL RANDAM NUMBER GENERATOR FROM THE IMSL. 

C THE SEEDS ARE READ FROM THE DATA FILE. 

C THE R.N.G. IS CALLED TWENTY FOUR TIMES. THE RESULT OF 

C EACH CALL IS STORED IN ROWS OF THE GNOISE ARRAY WHICH 

C IS A (24xNSTEPS+l) ARRAY. THE LAST COLUMN OF THIS ARRAY 

C CAN BE APPROPRIATELY SCALED TO SERVE AS RANDOM 

C INITIAL CONDITIONS. 

C 

NR=NSTEPS 

C READ(5,*)DSEED 

READ(5,*)ISEED 

CALL RNSET(ISEED) 

71 fORMAT(/1x,'************ SEED USED IN THE SIMULATION ' 
C 1 ,'= ',D14.7,IX,'************') 

1 , ' =  > , 1 1 2 , I X , ' * * * * * * * * * * * * ' )  
C WRITE(6,71)DSEED 

WRITE(6,71)ISEED 
DO 70 I=1,NRXT 

C CALL GGNPM(DSEED,NR,GAUS) 

CALL DRNNOA(NR,GAUS) 

DO 80 J=1,NR 

GNOISE(I,J)=GAUS(J) 

80 CONTINUE 

70 CONTINUE 

C 
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NR=MSTEPS 

DO 85 1=1,KRZ 

C CALL GGNPM(DSEED,NR,GAUS) 

CALL DRNNOA(NR,GAUS) 
DO 87 J=1,NSTEPS 

GNOISE(I+NRXT,J)=GAUS(J) 

87 CONTINUE 

85 CONTINUE 

C 

C THE Q MATRIX IS LOADED NEXT. 

C 

C THE Q ELEMENTS FOR THE POSITION AND VELOCITY STATES 

C 

TCUBE= CDELTAT**3)/3.DO 

TSQ=(DELTAT**2)/2.D0 

C 

C LOAD Q FOR THE POSITION STATES 

C 

DO 90 J=l,5,2 

Q(J,J)=WNPSDF*TCUBE 

Q(J,J+l)=WNPSDF*TSq 

Q(J+1,J+1)=WNPSDF*DELTAT 

QTRUECJ,J)=WNPSDT*TCUBE 

QTRUECJ,J+l)=WNPSDT*TSq 

QTRUECJ+1,J+1)=WNPSDT*DELTAT 

90 CONTINUE 

C 

C Q ELEMENTS FOR THE CLOCK STATES 

C 

0(7,7)=PSDTR2*TCUBE+PSDTR3*DELTAT 

Q(7,8)=PSDTR2*TSQ 

q(8,8)=PSDTR2*DELTAT 

C 
QTRUE(7,7)=q(7,7) 

qTRUE(7,8)=q(7,8) 

QTRUE(8,8)=q(8,8) 

C 

C COPY THE FILTER Q INTO qDET 

C 
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DO 91 NC=1,9 

DO 91 NR=1,9 

QDETCMR,WC)=q(NR,NC) 

91 CONTINUE 

C 

C MODIFY THE Q ELEMENTS FOR THE CLOCK STATES IN THE DET. FILTER 

C 

IF (BTA.EQ.0.0) THEN 

QDET(7,7)=WNPSD2*TCUBE+WNPSD3*DELTAT 

QDET(7,8)=WNPSD2*TSQ 

QDET(8,8)=WHPSD2*DELTAT 

ELSE 

EXPBT1=1-DEXP(-BTA*DELTAT) 

EXPBT2=1-DEXP(-2 *BTA*DELTAT) 

CON1=1.0/BTA 

C0N2=0.5/BTA 

A2BYB=WNPSD2/BTA 

qDET(7,7)=WNPSD3»DELTAT + (A2BYB/BTA)* 

1 (DELTAT - 2*C0N1*EXPBT1 + C0N2*EXPBT2) 

qDET(7,8)=A2BYB*(C0Nl*EXPBTl - C0N2*EXPBT2) 

qDET(8,8)=0.5*A2BYB*EXPBT2 

ENDIF 

C 

IF (NOSA.Eq.l) GO TO 92 

C 

C q ELEMENTS FOR THE SELECTIVE AVAILABILITY STATES 

C 

qMlCll=WNPSD4/ C 4*BHARMl*W0Ml* * 3 )  

qM2Cll=WNPSD5/(4*BHARM2*W0M2**3) 

DAMP1=DEXP(-2.D0*BHARM1*W0M1*DELTAT) 

DAMP2=DEXP(-2.D0*BHARM2*W0M2*DELTAT) 

B1W10=BHARM1*W1M1/W0M1 

B2W10=BHARM2*W1M2/W0M2 

W01SQ1=(W0M1/W1M1)**2 

W01Sq2=(WOM2/WlM2)**2 

BSqi=BHARMl**2 

BSq2=BHARM2**2 

qMlC12=WNPSD4/(4*WlMl**2) 

qM2C12=WNPSD5/(4*WlM2**2) 
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QM1C22=WNPSD4/(4*BHARM1*W0M1) 

QM2C22=WNPSD5/(4*BHARM2*W0M2) 

AR1=2.D0*W1M1*DELTAT 

AR2=2.D0*W1M2*DELTAT 

WD1=W01SQ1*DAMP1 

WD2=W01SQ2*DAMP2 

Q1HR11=QM1C11*(1.DO-WD1*(1.DO-BSQ1*DCOS(AR1)+B1W10*DSIN(AR1))) 

q2HRll=qM2Cll*(l.DO-WD2*(l.DO-BSQ2*DCOS(AR2)+B2W10*DSIN(AR2))) 

qiHR12=QMlC12*DAMPl*(l.DO-DCOS(ARl)) 

q2HR12=qM2C12*DAMP2*(1.DO-DCOS(AR2)) 

qiHR22=QMlC22*(l.DO-WDl*(l.DO-BSqi*DCOS(ARl)-BlW10*DSIW(ARl))) 

q2HR22=qM2C22*(l.DO-WD2*(l.DO-BSq2*DCOS(AR2)-B2W10*DSIN(AR2))) 

C 

C SAVE THE MEAN SqïïARE VALUES OF THE TWO SA PROCESSES 

C WHICH WILL BE USED FOR SCALING THE INITIAL CONDITIONS. 

C 

SASCFT(l)=DSqRT(qMlCll) 

SASCFT(2)=DSqRT(qMlC22) 

SASCFT(3)=DSqRT(qM2Cll) 

SASCFT(4)=DSqRT(qM2C22) 

C 

JST0P=9 + 4*(NSATS-1) 

DO 95 J=9,JST0P,4 

qTRUE(J,J)=qiHRll 

QTRUEd, J+l)=qiHR12 

qTRUE(J+1,J+l)=qiHR22 

95 CONTINUE 

C 

JST0P=11 + 4*(NSATS-1) 

DO 100 J=11,JST0P,4 

QTRUECJ,J)=q2HRll 

qTRUE(J,J+l)=q2HR12 

qTRUE(J+l,J+l)=q2HR22 

100 CONTINUE 

C 

92 CONTINUE 

C 

C DETERMINE THE SCALE FACTORS TO SHAPE THE STANDARD 

C NORMAL VARIABLES INTO THE CORRELATION STRUCTURE 
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C AS DEMANDED BY THE Q MATRIX 

C 

C SCALE FACTORS FOR HORIZONTAL STATES: 

C 

WNSF(1)=DSQRT(QTRUE(1,1)) 

WNSF(2)=QTRUE(1,2)/WNSF(1) 

WNSF(3)=DSQRT(QTRUE(2,2)-WNSF(2)**2) 

C 

C SCALE FACTORS FOR THE CLOCK STATES 

C 

WNSF(4)=DSqRT(qTRUE(7,7)) 

WNSF(5)=qTRIJE(7,8)/WNSF(4) 

WNSF(6)=DSQRT(QTRUE(8,8)-WNSF(5)**2) 

C 

C SCALE FACTORS FOR THE VERTICAL CHANNEL 

C 

WNSF(34)=DSqRT(QTRUE(5,5)) 

WNSF(35)=qTRUE(5,6)/WNSF(34) 

WNSF(36)=DSqRT(qTRUE(6,6)-WNSF(35)**2) 

C 

C SCALE FACTORS FOR THE SELECTIVE AVAILABILITY PROCESSES 

C 

IF (NOSA.NE.l) THEN 

WNSF(7)=DSQRT(qTRUE(9,9)) 

WNSF(8)=qTRUE(9,10)/WNSF(7) 

WNSF(9)=DSqRT(qTRUE(10,10)-WNSF(8)**2) 

WNSF(lO)=DSqRT(QTRUE(ll,11)) 

WNSF(ll)=qTRUE(ll,12)/WNSF(10) 

WNSF(l2)=DSqRT(QTRUE(12,12)-WNSF(ll)**2) 

ENDIF 

C 

C SCALE FACTORS FOR THE MEASUREMENT NOISE 

C 

WNSF(13)=DSqRT(RT) 

C 

C IF INPUT OF THE INITIAL P AND X IS NOT DESIRED, THEN 

C SET XTRUE EqUAL TO NEW RANDOM VARIBLES CALLED FROM IMSL. 

C OF COURSE, THESE VARIABELS MUST BE APPROPRIATELY SCALED. 

C THE INITIAL ESTIMATES OF THE SELECTIVE AVAILABILITY 
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C STATES ARE SET TO ZERO SINCE NO BETTER ESTIMATE IS KNOWN. 

C THE ELEMENTS OF THE INITIAL ERROR CQVARIANCE ARE SET TO 

C VARIANCE OF THE PROCESSES. FOR THE STANDARD EIGHT-STATE 

C FILTER VARIABLES, THE CQVARIANCE IS ZERO AND THE ESTIMATE 

C IS SET EQUAL TO THE TRUE PROCESS. THIS CORRESPONDS TO A 

C PERFECT ESTIMATE OF INITIAL POSITION,VELOCITY, AND 

C CLOCK ERRORS. 

C 

IF (PINPUT.NE.1.0) THEN 

C CALL THE RANDOM NUMBER GENERATOR FOR I.C.'S 

C CALL GGNPM(DSEED,NRXT,GAUS) 

CALL DRNNOA(NRXT,GAUS) 

C 

DO 101 1=1,8 

XTRUEN(I,1)=GAUS(I) 

XTRUED(I,1)=:GAUS(I) 

XHAT(I,1)=XTRUEN(I,1) 

XDET(I,1)=XTRUED(I,1) 

101 CONTINUE 

C 

IF (NOSA.EQ.l) GO TO 94 

C 

IST0P=9+4»(NSATS-1) 

DO 102 I=9,IST0P,4 

XTRUEN(1,1)=GAUS(I)*SASCFT(1) 

XTRUED(1,1)=XTRUEN(1,1) 

102 CONTINUE 

C 

IST0P=10+4*(NSATS-1) 

DO 103 I=10,ISTOP,4 

XTRUEN(1,1)=GAUS(I)*SASCFT(2) 

XTRUED(1,1)=XTRUEN(1,1) 

103 CONTINUE 

C 

IST0P=11+4*(NSATS-1) 

DO 104 I=11,IST0P,4 

XTRUEN(1,1)=GAUS(I)*SASCFT(3) 

XTRUED(1,1)=XTRUEN(1,1) 
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104 CONTINUE 
C 

IST0P=12+4*(NSATS-1) 

DO 105 I=12,IST0P,4 

XTRUEW(1,1)=GAUS(I)*SASCFT(4) 

XTRUED(1,1)=XTRUEN(1,1) 

105 CONTINUE 

C 

94 CONTINUE 

C 

ENDIF 
C 

IF (NXTO.EQ.l) THEN 

CALL SUM(MRXT,0,XTRUEN,NRXT,1,NULLE,NULLE) 

CALL SUM(MRXT,0,XTRUED,NRXT,1,NULLE,NULLE) 

CALL SUM(MRXH,0,XHAT,NRXH,1,NULL,NULL) 

CALL SUM(MRXH,0,XDET,NRXH,1,NULL,NULL) 

ENDIF 

C 

C NOW TAKE CARE OF SETTING THE POSITION AND VELOCITY COORDINATES 

C UP FOR THE X AND Y DIRECTIONS AT THE EEGINNING OF THE TURN 

C 

IF (NTURON.EQ.l) THEN 

C 

C FOR THE X POSITION AND VELOCITY 
C 

RADIUS=VELCTY/RADFRq 

C 

XHAT(1,1)=-RADIUS + XTRUEN(1,1) 

XDET(1,1)=-RADIUS + XTRUED(1,1) 

XTRUEN(1,1)=-RADIUS 

XTRUED(1,1)=-RADIUS 

C 

XHAT(2,1)=XTRUEN(2,1) 

XDET(2,1)=XTRUED(2,1) 

XTRUEN(2,1)=0.D0 

XTRUED(2,1)=0.D0 

C 

C FOR THE Y POSITION AND VELOCITY 
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XHAT(3,1)=XTRUEN(3,1) 

XDET(3,1)=XTRUED(3,1) 

XTRUEN(3,1)=0.D0 

XTRUED(3,1)=0.D0 

C 

XHAT(4,1)=-VELCTY + XTRUEN(4,1) 

XDET(4,1)=-VELCTY + XTRUED(4,l) 

XTRUEN(4,1)=-VELCTY 

XTRUED(4,1)=-VELCTY 

C 

ENDIF 

C 

16 F0RMAT(1X,'*************** INITIAL CONDITIONS 
1 '***************)) 

WRITE(6,16) 

109 FORMAT(/IX,'X NAV. TRUE C ,6(/lX,8(1X,D14.6))) 

WRITE(6,109)(XTRUEN(1,1),1=1,NRXT) 

106 F0RMAT(/1X,' X HAT 0',/IX,8(IX,D14.6)) 

WRITE(6,106) (XHATd , 1) , 1=1 ,NRXH) 

108 F0RMAT(/1X,'P DIA. 0',/IX,8(1X,D14.6)) 

WRITE(6,108)(P(I,I),I=1,NRXH) 

C 

58 FORMAT(/IX,'X DET. TRUE 0',6(/lX,8(1X,D14.6))) 

WRITE(6,58)(XTRUED(I,1),1=1,NRXT) 

107 F0RMAT(/1X,' X DET 0',/IX,8(1X,D14.6)) 

WRITE(6,107)(XDET(I,1),I=1,NRXH) 

111 F0RMAT(/1X,'PDET DIA. 0',/IX,8(IX,D14.6)) 

WRITE(6,111)(PDET(I,I),I=1,NRXH) 

C 

C GENERATE THE W AND V PROCESSES FOR THE REQUIRED NUMBER 

C OF POINTS. 

C 

DO 140 J=1,NSTEPS 

DO 110 1=1,3,2 

WNOISd, J)=GN0ISE(I,J)*WNSF(1) 

WN0IS(I+1, J)=GNOISE(I, J)*WNSF(2)+GN0ISE(I+1, J) * W I\fSF(3) 

110 CONTINUE 

WN0IS(5,J)=GN0ISE(5,J)*WNSF(34) 

WN0IS(6,J)=GN0ISE(5,J)*WNSF(35)+GN0ISE(6,J)*WNSF(36) 
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WN0IS(7,J)=GM0ISE(7,J)*WNSF(4) 

WN0IS(8,J)=GN0ISE(7,J)*WNSF(5)+GN0ISE(8,J)*WNSF(6) 

C 
IF (WOSA.EQ.l) GO TO 121 

C 

IST0P=9+4*(NSATS-1) 

DO 120 I=9,IST0P,4 

WNOISCI,J)=GN0ISE(I,J)*WNSF(7) 

WN0IS(I+1,J)=GN0ISE(I,J)*WNSF(8)+GN0ISE(I+1,J)*WNSF(9) 

120 CONTINUE 

C 

IST0P=11+4*(NSATS-1) 

DO 130 I=11,IST0P,4 

WNOISCl,J)=GNOISE(I,J)*WNSF(lO) 

WN0IS(I+1,J)=GNOISE(I,J)*WNSF(11)+GN0ISE(I+1,J)*WNSF(12) 

130 CONTINUE 

C 

121 CONTINUE 

C 

140 CONTINUE 

C 

DO 150 J=1,NSTEPS 

DO 150 1=1,NRZ 

VN0IS(I,J)=GN0ISE(I+NRXT,J)*WNSF(13) 

150 CONTINUE 
C 

C SUBTRACT OUT MEAN OF W PROCESS 

C BY DEFINITION, W AND V MUST BE ZERO MEAN PROCESSES. 

C BECAUSE THE IMSL RANDOM NUMBER GENERATOR TENDS TO GIVE 

C VARIATES WILL A SMALL MEAN, PROVISIONS MUST BE MADE TO 

C TO SUBTACT OUT THESE AVERAGE VALUES. 

C 

DO 230 I=1,NRXT 

SUM1=0.0 

DO 231 J=1,NSTEPS 

231 SUM1=SUM1+WN0IS(I,J) 

WMEAN=SUM1/FL0AT(NSTEPS) 

DO 232 J=1,NSTEPS 

232 WNOIS(I,J)=WNOIS(I,J)-WMEAN 
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230 CONTINUE 
C 
C SUBTRACT OUT MEAN OF V PROCESS 

C 

DO 233 1=1,NRZ 
SUM1=0.0 

DO 234 J=1,NSTEPS 

234 SUM1=SUM1+VN0IS(I,J) 

VMEAN=SUM1/FL0AT(MSTEPS) 

DO 235 J=1,NSTEPS 

VNOISd, J)=VNOIS(I, J)-VMEAN 

235 CONTINUE 

233 CONTINUE 

C 

C DETERMINE CORRELATION STRUCTURE OF W AND V 

C THIS IS DONE TO ALERT THE USER OF THE TRUE NATURE 

C OF THE NOISE PROCESSES WHICH DRIVES THE SYSTEM. 

C THIS IS DONE ONLY AS A CHECK AND HELPS IN UNDERSTAND-

C ING THE PARTICULAR RESULTS OF THE SIMULATION. 

C 

IF (NOSTAT.NE.l) WRITE(6,261) 
IST0P=NRXT-1 

DO 250 I=1,IST0P,2 

SUM1=0.0 

SUM2=0.0 

sisq=o.o 

S2SQ=0.0 

CROSS=0.0 

DO 260 J=1,NSTEPS 

SUM1=SUM1+WM0IS(I,J) 

SUM2=SUM2+WN0IS(I+l,J) 

SlSq=SlSQ+WNOIS(I,J)**2 

S2SQ=S2SQ+WN0IS(I+1,J)**2 

CROSS=WNOISCl,J)*WN0IS(I+1,J)+CROSS 

260 CONTINUE 

XM1=SUM1/FL0AT(NSTEPS) 

XM2=SUM2/FLOAT(HSTEPS) 

VARl=(SlSq-SUMl**2/FL0AT(NSTEPS))/(FL0AT(NSTEPS-l)) 

VAR2=(S2SQ-SUM2**2/FL0AT(NSTEPS))/(FL0AT(NSTEPS-1)) 



www.manaraa.com

206 

COV=(CROSS-SUM1*SUM2/FLOAT(NSTEPS))/(FLOAT(NSTEPS-1)) 

IF (NOSTAT.NE.l) 

1 WRITE(6,262)I,XM1,I,VARl,I+l,XM2,I+l,VAR2,GOV 

IF (NOSTAT.NE.l) WRITE(6,263)I,QTRUE(I,I),I+l, 

1 QTRUE(I+1,I+1),QTRUE(I,I+1) 

250 CONTINUE 

261 F0RMAT(/1X,'**************** STATISTICS OF PROCESS 

1 'VECTOR W ****************') 

262 F0RMAT(/1X,'MEAN',13,'=',D11.4,4X,'VAR',13,'=',Dll.4,4X, 

I'MEAN',13,'=',Dll.4,4X,'VAR',13,'=',Dll.4,4X, 

2'C0VARIANCE=',D11.4) 

263 FORMAT(6X,'QTRUE MATRIX SAYS VAR',13,'=',011.4,27X,'VAR',13, 

1 '=',D11.4,4X,'COVARIANCE=',D11.4) 

IF (NOSTAT.NE.l) WRITE(6,32l) 

DO 310 1=1,NRZ 

SUM1=0.0 

S1SQ=0.0 

DO 320 J=1,NSTEPS 

SUM1=SUM1+VN0IS(I,J) 

SlSq=SlSQ+VN0IS(l,J)**2 

320 CONTINUE 

XM1=SUM1/FL0AT(NSTEPS) 
VAR=(S1SQ-SUM1**2/FL0AT(NSTEPS))/FL0AT(NSTEPS-1) 

IF (NOSTAT.NE.l) WRITE(6,322)I,XM1,VAR.RT 

310 CONTINUE 

321 F0RMAT(/1X,'***************** STATISTICS OF MEASURE', 

1 'MENT NOISE VECTOR V ****************',/) 

322 FORMATdX, 'MEAN' , 13, ' = ' , DIO. 3, 3X, 'VAR=',D10.3, 

1 3X,'RTRUE MATRIX SAYS VAR=',D10.3,/) 

RETURN 
END 

C 

SUBROUTINE CLKCON(K) 

C 

C THIS SUBROUTINE DOES ALL THE SETUP WORK WHEN CLOCK COASTING IS 

C STARTED. IT COPIES THE CLOCK COVARIANCE INTO PY AND THE 

C POSITION AND CLOCK COVARIANCE INTO PXY. IT ALSO SETS UP ALL 

C OTHER SUPPORT MATRICES NEED DURING CLOCK COASTING. 

C 
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IMPLICIT REAL*8 (A-H,0-Z) 

C 
COMMON /C2/ H,PHI,PHITR,P,q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEN,XTRUED 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,QTRUE,NULLE 

REAL*8 H(9,9),PHI(9,9),PHITR(9,9),P(9,9),Q(9,9) 

REAL*8 RT,RF,ZN(9,1),ZD(9,1),W(44,1),V(44,1),XHAT(9,1) 

REAL*8 XTRUEN(44,1),XTRUED(44,1),WN0IS(44,1200),VNOIS(9,1200) 

REAL*8 HTRUE(44,44),PHITRU(44,44),QTRUE(44,44),NULLE(44,44) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NO SA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER WSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /CIO/ XDET,PDET,qDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,qY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),qDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,1),HY(9,2),PHIY(9,2),PHIYT(9,2),QY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

INTEGER K 

C 

C FIRST RESET THE MATRIX DIMENSIONS 

C 
NRXD=6 

C 

C COPY THE CLOCK COVARIANCE 

C 

PY(1,1)=PDET(7,7) 

PY(1,2)=PDET(7,8) 

PY(2,2)=PDET(8,8) 

PY(2,1)=O.DO 

C 

C COPY THE POSITION AND CLOCK COVARIANCE 

C 
DO 10 J=l,2 

DO 10 1=1,6 

PXY(I,J)=PDET(I,J+6) 
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10 CONTINUE 
C 
C FORM THE QY MATRIX FROM THE QDET FROM THE DETECTION FILTER 

C 
qY(l,l)=QDET(7,7) 

QY(1,2)=QDET(7,8) 

QY(2,2)=qDET(8,8) 

C 

C FORM THE TRANSITION MATRIX AND ITS TRANSPOSE FOR THE CLOCK 

C 

PHIY(1,1)=1.D0 

PHIYC1,2)=PHID(7,8) 

PHIY(2,1)=0.D0 

PHIY(2,2)=PHID(8,8) 

C 

CALL TRANSP(MRXH,PHIYT,2,2,PHIY,2,2) 

C 

C FORM THE CONNECTION MATRIX IN THE MEASUREMENT EQUATION: HY 

C 
DO 20 I=1,NSATS 

HY(I,1)=1.D0 

HY(I,2)=0.D0 

20 CONTINUE 

C 

C NOW LOAD THE CURRENT CLOCK ESTIMATES INTO THE YHAT VECTOR 

C 

YHAT(1,1)=XDET(7,1) 

YHAT(2,1)=XDET(8,1) 

C 

RETURN 

END 

C 

SUBROUTINE CLKCOF(K) 

C 

C THIS SUBROUTINE DOES ALL THE SETUP WORK WHEN CLOCK COASTING IS 

C ENDED. IT COPIES THE PROJECTED CLOCK COVARIANCE BACK INTO P 

C AND THE POSITION AND CLOCK COVARIANCE BACK INTO P. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 
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C 
COMMON /C2/ H,PHI,PHITR,P,Q,RT,RF,ZN,ZD,W,V,XHAT,XTaUEN,XTRUED 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,QTRUE,NULLB 

REAL*8 H(9,9),PHI(9,9),PHITR(9,9).P(9,9),Q(9,9) 

REAL*8 RT,RF,ZN(9,1),ZD(9,1),W(44,1),V(44,1),XHAT(9,1) 

REAL*8 XTRUEN(44,1),XTRUED(44,1),WN0IS(44,1200),VN0IS(9,1200) 

REAL*8 HTRUE(44,44),PHITRU(44,44),QTRUE(44,44),NULLB(44,44) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,N 0 S A 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,WRXD,MRZ,NRZ,NOSA 

C 

COMMON /CIO/ XDET,PDET,QDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,QY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),QDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,l),HY(9,2),PHIY(9,2),PHIYT(9,2),QY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

INTEGER K 

C 

C FIRST RESET THE MATRIX DIMENSIONS 

C 
NRXD=8 

C 

C COPY THE CLOCK COVARIANCE 

C 

PDET(7,7)=PY(i,l) 

PDET(7,8)=PY(1,2) 

PDET(8,8)=PY(2,2) 

C 

C COPY THE POSITION AND CLOCK COVARIANCE 

C 
DO 10 J=l,2 

DO 10 1=1,6 

PDET(I,J+6)=PXY(I,J) 

10 CONTINUE 

C 
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C LOAD THE PROJECTED CLOCK ESTIMATES BACK INTO THE XHAT VECTOR 

C 

XDET(7,1)=YHAT(1,1) 

XDET(8,1)=YHAT(2,1) 

C 

RETURN 

END 

C 

SUBROUTINE DIRCOS(K) 

C 

C THIS SUBROUTINE COMPUTES THE DIRECTION COSINES OF THE 

C LINE OF SIGHT VECTOR FROM THE VEHICLE TO THE SATELLITE 

C PROJECTED INTO THE VEHICLES LOCALLY LEVEL COORDINATE FRAME 

C OF REFERENCE. THE INITIAL ANGLES WHICH DEFINE THE INITIAL 

C VEHICLE AND SATELLITES POSITION ARE COMPUTED IN SUBROUTINE 

C SETUP IN UNITS OF RADIANS. DIR. COS. ARE USED IN THE H MATRIX 

C WHICH DESCRIBES THE PROJECTION OF THE PSEUDORAHGE MEASURE-

C MENT INTO THE POSITION ERRORS AND CLOCK ERRORS. A SET OF 

C DIRECTION COSINES IS COMPUTED FOR EACH SATELLITE. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /CI/ SOL,RE,PI 

REAL*8 SOL,RE,PI 

C 

COMMON /C2/ H,PHI,PHITR,P,Q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEN,XTRUED 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,QTRUE,NULLE 

REAL*8 H(9,9),PHI(9,9),PHITR(9,9),P(9,9),Q(9,9) 

REAL*8 RT,RF,ZN(9,1),ZDC9,1),W(44,1),V(44,1),XHAT(9,1) 

REAL*8 XTRUEN(44,1),XTRUED(44,1),WNOIS(44,1200),VNOIS(9,1200) 

REAL*8 HTRUE(44,44),PHITRU(44,44),qTRUE(44,44),NULLB(44,44) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT, NRXT, MRXH, NRXH, NRXD, MRZ, NRZ, NOS A 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,MRXT,MRXH,MRXH,NRXD,MRZ,NRZ,NOSA 

C 
COMMON /C4/ ALPHA,GZERO,BETA,PHYZ,THETA,RS,HDPLMT 
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REAL*8 ALPHA(24),GZER0(24) 

REAL*8 BETA,PHYZ,THETA,RS.HDPLMT 

C 
COMMON /C8/ NERROM.NERROF.NHYPON.NWINDW.NWINC.NWSIZE.NCOAST, 

1 NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,MGMSZ,NGON,NGSZ 

INTEGER MERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,WGSZ 
C 

COMMON /CIO/ XDET,PDET,qDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,QY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),qDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,1),HY(9,2),PHIY(9,2),PHIYT(9,2),QY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

COMMON /Cll/ SASCFT,DSEED,READIG,ISEED 

REAL*8 SASCFT(4),DSEED,READIC 

INTEGER ISEED 
C 

REAL*8 XI(24),YI(24),ZI(24),XE(24),YE(24),ZE(24) 

REAL*8 CXALL(24),CYALL(24),CZALL(24),GAMMA(24) 

REAL*8 CX(9),CY(9),CZ(9) 

REAL*8 G(9,9),GT(9,9),GSQ(9,9),GSqiNV(9,9) 

REAL*8 TDOP,HDOP,PDOP,GDOP,ELEV(9),AZIM(9) 

INTEGER NSATUP(9) 

C REAL*4 GAUS(4) 

REAL*8 GAIJS(4) 

C 

DO 10 1=1,24 

GAMMA(I)=GZER0(I)+TIME*PI/(2160O.DO*O.99726957DO) 

10 CONTINUE 

C 

DO 20 1=1,24 

XI(I)=RS*DSIN(GAMMA(I))*DSIN(BETA) 

YI(l)=-RS*(DCOS(GAMMA(I))*DSIN(ALPHA(I))+ 

1 DSIN(GAMMA(I))*DCOS(ALPHA(I))t=DCOS(BETA)) 

ZI(l)=RS*(DCOS(ALPHA(I))»DCOS(GAMMA(I))-

2 DSIN(ALPHA(I))*DSIN(GAMMA(I))*DCOS(BETA)) 

20 CONTINUE 

C 
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PHY=PHYZ + TIME*PI/(43200.D0*0.99726957D0) 

C 

DO 30 1=1,24 

XE(I)=XI(I)*DCOS(THETA)+YI(I)*DSIN(THETA)*DSIN(PHY)-

3 ZI(l)*DSIN(THETA)*DCOS(PHY) 

YE(I)=YI(I)*DCOS(PHY)+ZI(I)*DSIN(PHY) 

ZE(I)=XI(I)*DSIN(THETA)-YI(I)*DCOS(THETA)*DSIN(PHY)+ 

4 ZI(I)*DCOS(THETA)*DCOS(PHY) 

30 CONTINUE 

C 

DO 40 1=1,24 

RH0=DSQRT(XE(I)**2 + YE(I)**2 + (ZE(I) - RE)**2) 

CXALL(I)=XE(I)/RHO 

CYALL(I)=YE(I)/RH0 

CZALL(I)=(ZE(I)-RE)/RHO 

40 CONTINUE 

C 

DMASK=82.5D0*PI/180.DO 

THRESH=DCOS(DMASK) 

NUMSVS=0 

DO 39 1=1,24 

C STORE SAT. NUMBERS OF SATS. ABOVE 7.5 DEGREES 

IF (CZALL(I).GT.THRESH) THEN 
NUMSVS=NUMSVS + 1 
NSATUP(NUMSVS)=I 

END IF 

39 CONTINUE 

C 

C THIS PROGRAM IS USING ALL-IN-VIEW OPERATION 

C 

IF (K.EQ.l) THEN 

C USE NSATUP AND NUMSVS AS THE CORRECT SATELLITE DATA. 
NSATS=NUMSVS 

DO 56 I=1,NSATS 

NSATID(I)=NSATUP(I) 

56 CONTINUE 

C FOR K=1 THE SATELITTE SELECTION IS COMPLETE. 

GO TO 55 

ENDIF 
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C 

43 CONTINUE 

C 

C FIRST FIND SATS WHICH WERE USED PREVIOUSLY BUT WHICH 

C ARE NOT VISIBLE (ABOVE MASK ANGLE) AT THE CURRENT STEP. 

C FIND THE LAST SAT. IN NSATID WHICH IS MOT IN NSATUP. 

C ITS LOCATION WILL BE LOCATE IF THERE IS ONE. 

C 

L0CATE=MSATS+1 

DO 44 I=1,NSATS 

INSIDE=0 

DO 45 J=1,NUMSVS 

IF (NSATID(I).Eq.NSATUP(J)) INSIDE=1 

45 CONTINUE 

IF (INSIDE.EQ.O) LOCATE=I 

44 CONTINUE 

C 

C IF LOCATE IS LARGER THAN THE NUMBER OF SATS. THEM THERE ARE 

C NO SATS BEING USED WHICH HAVE GOME UNDER THE MASK ANGLE. 

C IF LOCATE IS EQUAL TO NSATS, THEN THE LAST SAT IN NSATID HAS 

C GONE BELOW THE MASK ANGLE. TO REMOVE THIS SAT. SIMPLY REDUCE 

C NSATS BY ONE. 

C 

IF (LOCATE.GE.NSATS) GO TO 48 

C 

C OTHERWISE LOCATE POINTS INSIDE NSATID. IM THIS CASE, REMOVE 

C THE SAT# AND CLOSE THE GAP BY SHIFTING THE OTHER SATS DOWN. 

C ALSO SHIFT THE TRUE SELECTIVE AVAILABILITY PROCESS DOWN SO 

C THAT EACH SAT RETAINS ITS OWN SA PROCESS. 

C 

NSATL1=NSATS-1 

DO 46 I=L0CATE,NSATL1 

NSATID(I)=NSATID(I+1) 

46 CONTINUE 

C 

DO 47 I=L0CATE,NSATL1 

IP0INT=8 + 4*(I-1) 

DO 47 J=l,4 

XTRUEN(IPOINT+J,1)=XTRUEM(IPOINT+J+4,1) 
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XTRUED(IPOIMT+J,1)=XTRUED(IPOIMT+J+4,1) 

47 CONTINUE 

C 

48 CONTINUE 

C 

C NOW DECREMENT NSATS. REDEFINE LOCATE SO THAT THE SEARCHING 

C FOR SATS WHICH HAVE GONE DOWN CONTINUES 

C 

IF (LOCATE.LE.NSATS) THEN 

NSATS=NSATS-1 

LOCATE=NSATS 

ENDIF 

C 

C IF LOCATE IS STILL LARGER THAN THE NUMBER OF SATS, THEN 

C NO MORE SATS IN NSATID HAVE GONE DOWN. IN THIS CASE CONTINUE 

C ON TO THE NEXT STAGE OF SATELLITE SELECTION. 

C 

IF (LOCATE.GT.NSATS) GO TO 49 

GO TO 43 

C 

49 CONTINUE 

C 

C IN THIS STAGE, WE FIND SATELLITES WHICH ARE NOW ABOVE THE 

C MASK ANGLE BUT WERE NOT CONTAINED IN THE PREVIOUS NSATID. 

C 

51 CONTINUE 

C 

C FIND THE LAST SAT IN NSATUP WHICH IS NOT IN NSATID 

C 

L0CATE=NUMSVS+1 

DO 52 I=1,NUMSVS 

INSIDE=0 

DO 53 J=l,NSATS 

IF (NSATUP(I).EQ.NSATID(J)) INSIDE=1 

53 CONTINUE 

IF (INSIDE.EQ.O) LOCATE=I 

52 CONTINUE 

C 

C IF LOCATE IS INSIDE NSATUP, THEN ADD THE SAT POINTED TO BY 
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C LOCATE AT THE END OF NSATID AND INCREMENT NSATS. 

C IF LOCATE IS STILL LARGER THAN NUMSVS, THEN NO NEW SAT WAS 

C FOUND. IN THIS CASE, THE SATELLITE SELECTION IS COMPLETE. 

C 

IF (LOCATE.LE.NUMSVS) THEN 
NSATS=NSATS+1 

NSATID(NSATS)=NSATUP(LOCATE) 

ELSE 

GO TO 55 

ENDIF 

C 

C WHEN ADDING A NEW SATELLITE TO NSATID, ALSO FORM AN INITIAL 

C CONDITION FOR THE NEW SELECTIVE AVAILABILITY PROCESS BY 

C CALLING THE RANDOM NUMBER GENERATOR. 

C 

IF (NOSA.NE.l) THEN 

C CALL GGWPM(DSEED,4,GAUS) 

CALL DRNW0A(4,GAUS) 

G 

ISTART=8+4*(NSATS-1) 

DO 54 1=1,4 

XTRUEM(I+ISTART,1)=GAUS(I)*SASCFT(I) 

XTRUED(I+ISTART,1)=GAUS(I)*SASCFT(I) 

54 CONTINUE 

ENDIF 
C 

GO TO 51 

C 

55 CONTINUE 

C 

DEFINE THE MATRIX DIMENSIONS RELATED TO THE # OF SATELLITES. 
C 

NRZ=NSATS 

IF (NOSA.NE.l) NRXT=8 + 4*NSATS 

C 

C ZERO OUT THE UNUSED PORTION OF XTRUE SO THAT ONLY PROCESSED 

C THAT ARE USED WILL APPEAR AS NON-ZERO WHEN PLOTTED. 
C 

NRXTP1=NRXT + 1 
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DO 58 I=NRXTP1,MRXT 

XTRUEN(I,1)=0.D0 

XTRUED(I,1)=0.D0 

58 CONTINUE 

C 

C NOW LOAD THE DIRECTION COSINE VECTORS WITH ONLY THOSE 

C WHICH ARE TO BE USED. 

C 

DO 57 I=1,NSATS 

CX(I)=CXALL(NSATID(I)) 

CY(I)=CYALL(NSATID(I)) 

CZ(I)=CZALL(NSATID(I)) 

57 CONTINUE 

C 

C LOAD UP THE H AND HTRUE MATRICES 
C 

DO 50 I=1,NSATS 

H(I,1)=-CX(I) 

H(I,3)=-CY(I) 

H(I,5)=-CZ(I) 

HTRUE(I,1)=-CX(I) 

HTRUE(I,3)=-CY(I) 

HTRUE(I,5)=-CZ(I) 

50 CONTINUE 

C 

C THE REST OF THIS SUBROUTINE IS FOR GDOP CALCULATIONS 

C AND ELEVATION AND AZIMUTH ANGLE CALCULATIONS. 

C 

KNGEOM=K-NGEOM 

IF ((K.GE.NGEOM).AND.(MOD(KNGEOM,NGMSZ).EQ.O)) THEN 
C 

DO 60 I=1,IISATS 

G(I,1)=CX(I) 

G(I,2)=CY(I) 

G(I,3)=CZ(I) 

G(I,4)=1.D0 

60 CONTINUE 

C 

CALL TRANSP(9,GT,4,NSATS,G,NSATS,4) 
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CALL MULT(9,1,GSQ,0,GT,4,NSATS,G,NSATS,4) 

CALL INVERT(9,1,GSQINV,4,GSQ) 

C 

ARG1=GSQMV(4,4) 

ARG2=(GSQINV(1,1)+GSQINV(2,2)) 

ARG3=(GSC)IMV(l,l)+GSqiNV(2,2)+GSQINV(3,3)) 

ARG4=(GSQIKV(l,l)+GSQINV(2,2)+GSqiIIV(3,3)+GSQINV(4,4)) 

IF (ARGI.GT.0.0) THEN 

TD0P=DSQRT(ARG1) 

ELSE 

TDOP=1.D40 

ENDIF 

C 

IF (ARG2.GT.0.0) THEN 

HD0P=DSQRT(ARG2) 

ELSE 
HD0P=1.D40 

ENDIF 

C 

IF (ARG3.GT.0.0) THEN 

PD0P=DSQRTCARG3) 

ELSE 
PDOP=1.D40 

ENDIF 

C 

IF (ARG4.GT.0.0) THEN 

GD0P=DSqRT(ARG4) 

ELSE 
GDQP=1.D40 

ENDIF 

C 

68 F0RMAT(/1X,20(CURRENT SATELLITE GEOMETRY ',20('*')) 

61 FORMATClX,'STEP',15,1%,'TDOP=',F8.3,2X,'HD0P=',F8.3, 

1 2X,'PD0P=',F8.3,2X,'GD0P=',F8.3) 

62 FORMATClX,'SAT#',9(4X,12,3X)) 

63 FORMATClX,'ELEV,9(F8.2,IX)) 

64 FORMATClX,'AZIM',9(F8.2,IX)) 

C 

C FIND THE ELEVATION AND AZIMUTH ANGLES FOR EACH SAT. 
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WRITE(6,68) 

WRITE(6,61)K,TDOP,HDOP,PDOP,GDOP 

DO 42 J=l,NSATS 

I=NSATID(J) 

AMG=(180.DO/PI)*DARCOS(CZALL(I)) 

ELEV(J)=90.D0-ANG 

IF (DABS(XE(I)).GT.l.OD-30) THEN 

ANG=(180.DO/PI)*DATAW(YE(I)/XE(I)) 

IF ((XE(I).GT.O.DO).AND.(YE(I).GT.O.DO)) THEN 

AZIM(J)=360.DO-ANG 

ELSE IF ((XE(I).GT.O.DO).AND.(YE(I).LT.O.DO)) THEN 
AZIM(J)=-ANG 

ELSE IF ((XE(I).LT.O.DO).AND.(YE(I).LT.O.DO)) THEN 
AZIM(J)=180.D0 - ANG 

ELSE 

AZIM(J)=180.DO - ANG 

ENDIF 

ELSE 

IF (YE(I).GT.O.DO) THEN 

AZIM(J)=270.D0 

ELSE 
AZIM(J)=90.D0 

ENDIF 

ENDIF 
42 CONTINUE 

C 

WRITE(6,62)(KSATID(I),1=1,NSATS) 

WRITE(6.63)(ELEV(I),1=1,NSATS) 

WRITE(6,64)(AZIM(I),1=1,NSATS) 

C 

C NOW OBTAIN THE GDOPS FOR EACH SUB-SOLUTION 
C 

HDPMAX=0.D0 

NMAX=1 

DO 106 1=1,NSATS 
KK=0 

NS1=NSATS-1 

DO 206 J=1,NS1 
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IF (J.EQ.I) THEN 
KK=J+1 

ELSE 
KK=KK+1 

ENDIF 
G(J,1)=CX(KK) 

G(J,2)=CY(KK) 

G(J,3)=CZ(KK) 

G(J,4)=1.0D0 

CONTINUE 

CALL TRANSP(9,GT,4,NS1,G,NS1,4) 

CALL MULT(9,1,GSQ,0,GT,4,NS1,G,NS1,4) 

CALL INVERT(9,0,GSQINV,4,GSq) 

ARG1=GSQIMV(4,4) 

ARG2=(GSQINV(1,1)+GSQINV(2,2)) 

ARG3=(GSQINV(1,1)+GSQINV(2,2)+GSQINVC3,3)) 

ARG4=(GSQINV(1,1)+GSQINV(2,2)+GSQINV(3,3)+GSQINV(4,4)) 

IF (ARGI.GT.0.0) THEN 

TD0P=DSQRT(ARG1) 

ELSE 
TDOP=1.D40 

EMDIF 

IF CARG2.GT.0.0) THEN 
HD0P=DSqRT(ARG2) 

ELSE 

HD0P=1.D40 

ENDIF 

IF (ARG3.GT.0.0) THEN 

PD0P=DSQRT(ARG3) 

ELSE 

PDOP=1.D40 

ENDIF 

IF (ARG4.GT.0.0) THEM 

GD0P=DSQRT(ARG4) 

ELSE 
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GD0P=1.D40 

EMDIF 

IF (HDOP.GT.HDPMAX) THEN 
HDPMAX=HDOP 
NMAX=I 

ENDIF 

FORMATdX, 'SUB SOL#' ,11,IX, ' TDOP= ' ,F8. 3, 2X, 'HDOP= ' , F8. 3, 

2X,'PDOP=',F8.3,2X,'GDOP=',F8.3) 

WRITE(6,201)I,TDOP,HDOP,PDOP,GDOP 

CONTINUE 

FORMAT(IX,'EXPLICIT CLOCK COASTING IS STARTED AT STEP=',I5) 

FORMATdX,'EXPLICIT CLOCK COASTING IS STOPPED AT STEP=',I5) 

IF ((HDPMAX.GT.HDPLMT).AND.(NCOAST.EQ.O)) THEN 

NC0AST=1 

WRITE(6,402)K 

CALL CLKCOM(K) 
ENDIF 

IF ((NCOAST.EQ.l).AND.(HDPMAX.LT.HDPLMT)) THEN 
NC0AST=0 

WRITE(6,403)K 

CALL CLKCOF(K) 
ENDIF 

IF (NCOAST.EQ.l) THEN 

OBTAIN THE DOPS FOR MASTER SOLUTION WITH CLOCK COASTING 

DO 600 I=1,NSATS 

G(I,1)=CX(I) 

G(I,2)=CY(I) 

G(I,3)=CZ(I) 

G(I,4)=1.D0 

CONTINUE 
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NSATS1=WSATS + 1 

G(NSATS1,1)=0.D0 

G(WSATS1,2)=0.D0 

G(MSATS1,3)=0.D0 

G(NSATS1,4)=1.D0 

CALL TRAMSP(9,GT,4,MSATSl,G,MSATS1,4) 

CALL MULT(9,1,GSQ,0,GT,4,HSATSl,G,NSATSl,4) 

CALL INVERT(9,1,GSQINV,4,GSQ) 

C 

ARG1=GSQINV(4,4) 

ARG2=(GSQINV(l,l)+GSqiNV(2,2)) 

ARG3=(GSqiNV(l,l)+GSqiNV(2,2)+GSQINV(3,3)) 

ARG4=(GSqiNV(l,l)+GSqiNV(2,2)+GSqiNV(3,3)+GSqiMV(4,4)) 

IF (ARGI.GT.0.0) THEN 

TDOP=DSqRT(ARGl) 

ELSE 
TDOP=1.D40 

ENDIF 

C 

IF (ARG2.GT.0.0) THEM 

HD0P=DSqRT(ARG2) 

ELSE 
HD0P=1.D40 

ENDIF 

C 

IF (ARG3.GT.0.0) THEN 

PD0P=DSqRT(ARG3) 

ELSE 
PD0P=1.D40 

ENDIF 

C 

IF (ARG4.GT.0.0) THEN 

GD0P=DSqRT(ARG4) 

ELSE 

GD0P=1.D40 

ENDIF 

C 

601 FORMATCIX,'DOPS FOR ALL SATS PLUS CLOCK MEASUREMENT') 

WRITE(6,601) 
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WRITE(6,61)K,TD0P,HD0P,PD0P,GD0P 

C 

C OBTAIN GDOPS FOR EACH SUB-SOLUTION WITH CLOCK COASTING 

C 

404 FORMATClX,'DOPS FOR SUB SOLUTIONS WITH CLOCK COASTING') 

WRITE(6,404) 

C 

DO 506 I=1,NSATS 
KK=0 

NS1=NSATS-1 

DO 606 J=1,NS1 

IF (J.EQ.I) THEN 
KK=J+1 

ELSE 
KK=KK+1 

ENDIF 
GCJ,1)=CX(KK) 

G(J,2)=CY(KK) 

G(J,3)=CZ(KK) 

G(J,4)=1.0D0 

606 CONTINUE 

G(NSATS,1)=0.D0 

G(NSATS,2)=0.D0 

G(NSATS,3)=0.D0 

G(NSATS,4)=1.D0 

CALL TRANSP(9,GT,4,NSATS,G,NSATS,4) 

CALL MULT(9,1,GSQ,0,GT,4,NSATS,G,NSATS,4) 

CALL INVERT(9,0,GSqiNV,4,GSQ) 

ARG1=GSQINV(4,4) 

ARG2=(GSQINV(1,1)+GSQINV(2,2)) 

ARG3=(GSQINV(1,1)+GSQINV(2,2)+GSQINV(3,3)) 

ARG4=(GSQINV(l,l)+GSqiNV(2,2)+GSqiNVC3,3)+GSqiNV(4,4)) 
IF (ARGI.GT.0.0) THEN 

TDOP=DSqRT(ARGl) 

ELSE 
TD0P=1.D40 

ENDIF 

C 

IF (ARG2.GT.0.0) THEN 
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HD0P=DSQRT(ARG2) 

ELSE 

HDOP=1.D40 

ENDIF 

C 

IF (ARG3.GT.0.0) THEM 

PD0P=DSQRT(ARG3) 

ELSE 

PDOP=1.D40 

ENDIF 

C 

IF (ARG4.GT.0.0) THEN 

GD0P=DSQRT(ARG4) 

ELSE 
GDOP=1.D40 

ENDIF 

C 

WRITE(6,201)I,TDOP,HDOP,PDOP,GDOP 

506 CONTINUE 

C 

ENDIF 

ENDIF 

C 

RETURN 

END 
C 

SUBROUTINE MEASUR(K) 

C 

C THIS SUBROUTINE TAKES THE TRUE STATE AND USES THE 

C THE TRUE KALMAN FILTER MEASUREMENT EQUATION TO GENERATE 

C THE CURRENT MEASUREMENT Z. IT ALSO HAS THE ABILITY TO 

C CORRUPT EACH MEASUREMENT WITH A RAMP ERROR. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C2/ H,PHI,PHITR,P,Q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEM,XTRUED 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,QTRUE,NULLS 

REAL*8 H(9,9),PHI(9,9),PHITR(9,9),P(9,9),Q(9,9) 

REAL*8 RT,RF,ZN(9,1),ZD(9,1),W(44,1),V(44,l),XHAT(9,1) 
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REAL*8 XTRUEN(44,1),XTRUED(44,1),WN0IS(44,1200),VN0IS(9,1200) 

REAL*8 HTRUE(44,44),PHITRU(44,44),QTRUE(44,44),NULLB(44,44) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATO,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,KRZ,NOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,MRZ,NOSA 

C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9, 9) 

C 

COMMON /G8/ NERRON,NERROF,MHYPaN,MWINDW,WWINC,MWSIZE,NCOAST, 

1 NONOIS, NPE,NC2INC,WC2SZ,IIC20N,NGEOM, NGMSZ, NGON, NGSZ 

INTEGER NERRON,NERROF,WHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS , NPE, NC2INC, IIC2SZ, WC20N, MGEOM, NGMSZ, NGON, NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,NDOF,MDFSTP,MDISAT,MDISTP,NOERR,NALOÏÏT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(IO) 

REAL*8 VBLKA(9,lO),VARINV(9,9,lO),RESVAR(9,10),SATC0M(9) 

INTEGER ND0F(120),NDFSTP(10),MD1SAT(9),ND1STP(10),NOERR,NALOUT 

C 

COMMON /CIO/ XDET,PDET,qDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,QY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),qDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,1),HYC9,2),PHIY(9,2),PHIYT(9,2),QY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

INTEGER K 

REAL*8 HX(44,1) 

C 

C THE CURRENT V NOISE VECTOR WILL BE GRABBED FROM 

C THE VMOIS ARRAY. 

C 

IF (NONOIS.EQ.l) THEN 

CALL SUM(MRZ,0,V,MRZ,1,NULL,NULL) 

ELSE 
DO 20 1=1,NRZ 
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V(I,1)=VN0IS(I,K) 

20 CONTINUE 

ENDIF 

C 

IF ((K.GE.NERRON).AND.(K.LT.NERROF)) THEN 

RPTIME=DELTAT*FLOAT(K-NERRON) 

DO 21 1=1,NRZ 

V(I,1)=V(I,1) + SLOPE(I)*RPTIME + BIAS(I) 

21 CONTINUE 

ENDIF 

C 

CALL MULT(MRXT,0,HX,0,HTRUE,NRZ,NRXT,XTRUEN,NRXT,1) 

C 

C NOW ADD THE MEASUREMENT NOISE TO THE TRUE NAV. MEASUREMENT 

C 

DO 30 1=1,NRZ 

ZN(I,1)=HX(I,1) + V(I,1) 

30 CONTINUE 

C 

CALL MULT(MRXT,0,HX,0,HTRUE,NRZ,NRXT,XTRUED,NRXT,1) 

C 

C NOW ADD THE MEASUREMENT NOISE TO THE TRUE DET. MEASUREMENT 

C 

DO 40 1=1,NRZ 

ZD(I,1)=HX(I,1) + V(I,1) 

40 CONTINUE 

C 

RETURN 

END 

C 

SUBROUTINE UPDATE(K) 

G 

C THIS SUBROUTINE ACCEPTS THE CURRENT MEASUREMENT, 

C AND USES IT TO UPDATE THE ESTIMATE OF THE STATE VECTOR. 

C THE ERROR COVARIANCE IS ALSO UPDATED HERE. 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C2/ H,PHI,PHITR,P, q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEN,XTRUED 



www.manaraa.com

226 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,QTRUE,NULLE 

REAL*8 H(9,9),PHI(9,9),PHITR(9,9),P(9,9),Q(9,9) 

REAL*8 RT,RF,ZN(9,1),ZD(9,1),W(44,1),V(44,1),XHAT(9,1) 

REAL*8 XTRUEN(44,1),XTRUED(44,1),WN0IS(44,1200),VNOIS(9,1200) 

REALMS HTRUE(44,44),PHITRU(44,44),QTRUE(44,44),NULLB(44,44) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,MRZ,H 0 S A 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,N 0 S A 

C 

COMMON /C5/ XACTII,XACTD,XETRAJ,PTRAJ,XDTRAJ,PDTRAJ 

REAL*8 XACTN(44,1200),XACTD(8,1200),XETRAJ(8,1200) 

REAL*8 PTRAJ(8,1200),XDTRAJ(8,1200),PDTRAJ(8,1200) 

C 

COMMON /C6/ A,B,C,D,U,AT,BT,UT 

REAL*8 A(9,9,10,10),8(9,9,10),0(9,9,10,10),0(9,9,10),U(9,1) 

REAL*8 AT(9,9,10,10),BT(9,9,10),UT(9,1) 

C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 

COMMON /C8/ NERRON,NERROF,NHYPOM,NWINDW,NWINC,NWSIZE,NCOAST, 

1 NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEDM,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,WHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NOMOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,NDOF,NDFSTP,NDISAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(IO) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATC0N(9) 

INTEGER WD0F(12O),NDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 

C 

COMMON /CIO/ XDET,PDET,qDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,QY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),QDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,1),HY(9,2),PHIY(9,2),PHIYT(9,2),QY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 
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C 

COMMON /C12/ CHITBL,TBLSIZ,TBLDOF,LOCSIZ 

REAL*8 CHITBL(66,54),TBLSIZ(54),TBLD0F(66),L0CSIZ(4) 

C 

COMMON /C13/ SMAT,PWOFFN,PWOFFD 

REAL*8 SMATO.IO) ,PWOFFN(lO) ,PWOFFD(10) 

C 

INTEGER K 

REAL*8 HTRAN(9,9),PH(9,9) 

REAL*8 GAIN(9,9),HPHR(9,9) 

REAL*8 HPHRIN(9,9),RESID(9,1),RESTRA(9,9) 

REAL*8 ZHPHR(9,9) 

REAL*8 ZHPHRZC9,1),HX(9,1),XC0RR(9,1) 

REAL*8 ANEW(9,9),CNEW(9,9),AOLD(9,9) 

REAL*8 KH(9,9),CC0EF(9,9) 

REAL*8 IMINKH(9,9),IMKHT(9,9),AC0EF(9,9) 

REAL*8 HPHI(9,9),DNEW(9,9),BOLD(9,9),BNEW(9,9) 

REAL*8 HYTRAN(9,9),PYHY(9,9),HYPY(9,2),HYPYHY(9,9),PXYHYT(9,9) 

REAL » 8 HPXYHY(9,9),HYPYXH(9,9),HYPYX(9,9),PXYHYK(9,9) 

REAL*8 KHYPY(9,2),HYYHAT(9,1),GAINT(9,9) 

REAL*8 HERRN(20),HERRD(20) 

REAL*8 CHECK(9,9) 

C 

C FIRST OBTAIN THE OPTIMAL GAIN FOR THE NAVIGATION FILTER 

C 

CALL TRANSP(MRXH,HTRAN,NRXH,NRZ,H,MRZ,NRXH) 

CALL MULT(MRXH,0,PH,1,P,NRXH,NRXH,HTRAN,NRXH,NRZ) 

CALL MULT(MRXH,1,HPHR,0,H,NRZ,NRXH,PH,NRXH,NRZ) 
DO 10 1=1,NRZ 

HPHR(I,I)=HPHR(I,I)+RF 

10 CONTINUE 

CALL INVERT(MRXH,1,HPHRIN,NRZ,HPHR) 

CALL MULT(MRXH,0,GAIN,0,PH,NRXH,NRZ,HPHRIN,NRZ,NRZ) 

C 

C UPDATE THE NAVIGATION FILTER COVARIANCE 

C 

CALL MULT (MRXH, 0,KH,0, GAIN, NRXH, NRZ, H, NRZ, NRXH) 

CALL DIFF(MRXH,0,IMINKH,NRXH,NRXH,IDENT,KH) 

CALL TRANSP(MRXH,IMKHT,NRXH,NRXH,IMINKH,NRXH,NRXH) 
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CALL SCALEP(MRXH,P,NRXH,IMKHT) 

C 

C UPDATE THE NAVIGATION FILTER STATE ESTIMATE 

C 

CALL MULT(MRXH,0,HX,0,H,NRZ,NRXH,XHAT,NRXH,1) 

CALL DIFF(MRXH,0,RESID,NRZ,1,ZN,HX) 

CALL MULT(MRXH,0,XCORR,0,GAIN,NRXH,NRZ,RESID,NRZ,1) 

CALL ADDON(MRXH,XHAT,NRXH,1,XCORR) 

C 

C NOW UPDATE THE CONNECTION MATRICES FOR EACH S AND UO 

C 

IF (K.GE.NHYPON) THEN 

C 

CALL MULT(MRXH,0,ACOEF,0,IMINKH,NRXH,NRXH,PHI,NRXH,NRXH) 

C 

DO 210 NW=1,NWINDW 

IF (NW.EQ.WWINDW) THEN 

CALL DIFF(MRXH,0,ANEW,NRXH,NRZ,NULL,GAIN) 

ELSE 

NWLAST=NWINDW-1 

DO 211 IIC=1,NRZ 

DO 211 NR=1,NRXH 

AOLD(NR,NC)=AT(NR,NC,NW,NWLAST) 

211 CONTINUE 

CALL MULT(MRXH,0,ANEW,0,ACOEF,NRXH,NRXH,AOLD,NRXH,NRZ) 

ENDIF 

C 

DO 212 NC=1,NRZ 

DO 212 MR=1,NRXH 

AT(NR,NC,NW,NWINDW)=ANEW(NR,NC) 

212 CONTINUE 

C 

IF (NW.EQ.NWINDW) THEN 

IF (NW.EQ.l) THEN 

CALL SUM(MRXH,0,BNEW,NRXH,NRXH,ACOEF,NULL) 

ELSE 

NWLAST=NW-1 

DO 215 NC=1,NRXH 

DO 215 NR=1,NRXH 
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BOLD(WR,NC)=BT(NR,NC,WWLAST) 

215 CONTINUE 

CALL MULT(MRXH,0,BNEW,0,ACOEF,NRXH,MRXH, 

1 BOLD,NRXH,NRXH) 

ENDIF 

DO 216 NC=1,NRXH 

DO 216 NR=1,NRXH 

BT(MR,NC,NW)=BNEW(NR,NC) 

216 CONTINUE 

ENDIF 

C 

210 CONTINUE 

C 

ENDIF 

C 

C NOW OBTAIN THE OPTIMAL GAIN FOR THE DETECTION FILTER 

C 

CALL MULT(MRXH,0,PH,1,PDET,NRXD,NRXD,HTRAN,NRXD,NRZ) 

CALL MULT(MRXH,1,HPHR,0,H,NRZ,NRXD,PH,NRXD,NRZ) 
DO 20 1=1,NRZ 

HPHR(I,I)=HPHR(I,I)+RF 

20 CONTINUE 

C 

IF (NCOAST.EQ.l) THEN 

CALL TRANSP(MRXH,HYTRAN,2,NRZ,HY,NRZ,2) 

CALL MULT(MRXH,0,PYHY,1,PY,2,2,HYTRAN,2,NRZ) 

CALL MULT(MRXH,1,HYPYHY,0,HY,NRZ,2,PYHY,2,NRZ) 

CALL MULT(MRXH,0,PXYHYT,0,PXY,NRXD,2,HYTRAN,2,NRZ) 

CALL MULT(MRXH,0,HPXYHY,0,H,NRZ,NRXD,PXYHYT,NRXD,NRZ) 

CALL TRANSP(MRXH,HYPYXH,NRZ,NRZ,HPXYHY,NRZ,NRZ) 

CALL ADDON(MRXH,HPHR,NRZ,NRZ,HYPYHY) 

CALL ADDON(MRXH,HPHR,NRZ,NRZ,HYPYXH) 

CALL ADDON(MRXH,HPHR,NRZ,NRZ,HPXYHY) 

CALL ADDON(MRXH,PH,NRXD,NRZ,PXYHYT) 

ENDIF 
C 

CALL INVERT(MRXH,1,HPHRIN,NRZ,HPHR) 

C 

CALL MULT(MRXH,0,GAIN,0,PH,NRXD,NRZ,HPHRIN,NRZ,NRZ) 
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C 

C UPDATE THE DETECTION FILTER COVARIANCE 

C 

CALL MULT(MRXH,0,KH,0,GAIN,NRXD,NRZ,H,NRZ,NRXD) 

CALL DIFF(MRXH,0,IMINKH,MRXD,NRXD,IDENT,KH) 

CALL TRANSP(MRXH,IMKHT,NRXD,NRXD,IMINKH,NRXD,NRXD) 

CALL SCALEP(MRXH,PDET,NRXD,IMKHT) 

C 

IF (NCOAST.EQ.l) THEN 

C 

C SUBTRACT OUT THE CORRELATION OF PXY 

C 

CALL TRANSP(MRXH,GAINT,NRZ,NRXD,GAIN,NRXD,NRZ) 

CALL MULT(MRXH,0,PXYHYK,0,PXYHYT,NRXD,NRZ,GAINT,NRZ,NRXD) 

CALL HSUBOT(MRXH,PDET,NRXD,NRXD,PXYHYK) 

C 

C ALSO UPDATE PXY 

C 

CALL MULTBY(MRXH,IMINKH,NRXD,NRXD,PXY,NRXD,2) 

CALL TRANSP(MRXH,HYPY,NRZ,2,PYHY,2,NRZ) 

CALL MULT(MRXH,0,KHYPY,0,GAIN,NRXD,NRZ,HYPY,NRZ,2) 

CALL SUBOUT(MRXH,PXY,NRXD,2,KHYPY) 

C 

ENDIF 

C 

C UPDATE THE DETECTION FILTER STATE ESTIMATE 

C 

CALL MULT(MRXH,0,HX,0,H,NRZ,NRXD,XDET,NRXD,1) 

IF (NCOAST.EQ.l) THEN 

CALL MULT(MRXH,0,HYYHAT,0,HY,NRZ,2,YHAT,2,1) 

CALL ADDON(MRXH,HX,NRZ,1,HYYHAT) 

ENDIF 

CALL DIFF(MRXH,0,RESID,NRZ,1,ZD,HX) 

CALL MULT(MRXH,0,XCORR,0,GAIN,NRXD,NRZ,RESID,NRZ,1) 

CALL ADDON(MRXH,XDET,NRXD,1,XCORR) 

C 

C SAVE THE VECTOR OF RESIDUALS FROM THE DETECTION FILTER 

C 

DO 30 M=1,NRZ 
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VSAVE(M,K)=RESID(M,1) 

30 CONTINUE 

C 

C ZERO OUT THE UNUSED PORTION OF VSAVE 

C 
NRZP1=NRZ+1 

DO 40 M=NRZP1,MRZ 

VSAVE(M,K)=O.DO 

40 CONTINUE 

C 

IF (K.GE.NHYPON) THEN 

C 

C SAVE THE HPHRIV MATRIX FROM THE DETECTION FILTER 

C 

DO 130 NC=1,NRZ 

DO 130 NR=1,NRZ 

VARINV(NR,NC,NWINDW)=HPHRIN(NR,NC) 

130 CONTINUE 

C 

C SAVE THE MAIN DIAGONAL OF THE RESIDUAL COVARIANCE MATRIX 

C 

DO 140 NR=1,NRZ 

RESVAR(NR,NWINDW)=HPHR(NR,NR) 

140 CONTINUE 

C 

C SAVE THE CORRELATION BETWEEN XI AND X3 FROM THE NAV FILTER 

C 

PW0FFN(NWINDW)=P(1,3) 

PWOFFD(NWINDW)=PDET(1,3) 

C 

ENDIF 

C 

IF (K.GE.NHYPON) THEN 

C 

C SAVE THE DEGREES OF FREEDOM AT EACH STEP IN NWINDW 

C 

IF (NCOAST.EQ.l) THEN 

NDFSTP(NWINDW)=NSATS 

ELSE 
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MDFSTP(WWINDW)=WSATS 

ENDIF 

C 

c 

c 

SAVE THE NUMBER OF SATELLITES AT EACH STEP IN NWINDW 

NSATW(NWINDW)=NSATS 

C 

c 

c 

SAVE THE VECTOR OF RESIDUALS FOR CURRENT WINDOW 

51 

C 

DO 51 M=1,NRZ 

VBLK(M,NWINDW)=RESID(M,1) 

CONTINUE 

CALL MULT(MRXH,0,ACOEF,0,IMINKH,NRXD,NRXD,PHID,NRXD,NRXD) 

CALL MULT(MRXH,0,HPHI,0,H,NRZ,NRXD,PHID,NRXD,NRXD) 

CALL DIFF(MRXH,0,CCOEF,NRZ,NRXD,MULL,HPHI) 

DO 110 NW=1,NWINDW 

IF (NW.EQ.NWINDW) THEN 

CALL DIFF(MRXH,0,ANEW,NRXD,NRZ,NULL,GAIN) 

CALL DIFF(MRXH,0,CNEW,NRZ,NRZ,NULL,IDENT) 

ELSE 

NWLAST=NWINDW-1 

DO 111 NC=1,NRZ 

CALL MULT(MRXH,0,ANEW,0,ACOEF,NRXD,NRXD,AOLD,NRXD,NRZ) 

CALL MULT(MRXH,0,CNEW,0,CCOEF,NRZ,NRXD,AOLD,NRXD,NRZ) 

C 

111 

DO 111 NR=1,NRXD 

AOLD(NR,NC)=A(NR,NC,NW,NWLAST) 

CONTINUE 

ENDIF 
C 

112 
C 

DO 112 NC=1,NRZ 

DO 112 NR=1,MRXD 

A(NR,NC,NW,NWINDW)=ANEW(NR,NC) 

CONTINUE 

DO 113 NC=1,NRZ 

DO 113 NR=1,NRZ 

C(NR,NC,NW,NWINDW)=CNEW(NR,NC) 
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113 CONTINUE 

C 

IF (NW.EQ.NWINDW) THEN 

IF (NW.EQ.l) THEN 

CALL SUM(MRXH,0,DNEW,NRZ,NRXD,CCOEF,NULL) 

CALL SUM(MRXH,0,BNEW,MRXD,NRXD,AC OEF,NULL) 

ELSE 

NWLAST=NW-1 

DO 115 NC=1,NRXD 

DO 115 NR=1,NRXD 

BOLD(NR,NC)=B(NR,NC,NWLAST) 

115 CONTINUE 

CALL MULT(MRXH,0,DNEW,0,CCOEF,NRZ,NRXD, 

1 BOLD,NRXD,NRXD) 

CALL MULT(MRXH,0,BNEW,0,ACOEF,NRXD,NRXD, 

1 BOLD,NRXD,NRXD) 

ENDIF 

DO 116 NC=1,NRXD 

DO 116 NR=1,NRXD 

B(MR,NC,NW)=BNEW(NR,NC) 

116 CONTINUE 

DO 114 NC=1,NRXD 

DO 114 NR=1,NRZ 

D(NR,NC,NW)=DNEW(NR,NC) 

114 CONTINUE 

ENDIF 

C 

110 CONTINUE 

C 

ENDIF 

C 

C UPDATE CHISQ 

C 

IF (K.GE.NC20N) THEM 

C 

C PERFORM SOME INITIALIZATION AT THE START OF THE 

C FIRST WINDOW. 

C 

IF (K.EQ.NC20N) THEN 
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MC2INC=1 

ND0F(NC2INC)=0 

CHI(NC2IÎIC)=0.D0 

ENDIF 

FORM THE CHI-SQUARED STATISTIC AND ADD IT TO THE 

THE SUM FOR THE CURRENT WINDOW. ALSO INCREMENT 

THE DEGREES OF FREEDOM. 

CALL TRANSP(MRXH,RESTRA,1,NRZ,RESID,NRZ,1) 

CALL MULT(MRXH,0,ZHPHR,0,RESTRA,1,NRZ,HPHRIN,NRZ,NRZ) 

CALL MULT(MRXH,0,ZHPHRZ,0,ZHPHR,1,NRZ,RES ID,NRZ,1) 

CHI(NC2INC)=CHI(NC2INC) + ZHPHRZ(l,l) 

IF (NCOAST.Eq.l) THEN 

WD0F(NC2INC)=ND0F(NC2INC) + NRZ 

ELSE 

MD0F(NC2INC)=ND0F(NC2INC) + NRZ 

ENDIF 

KSTEP=K-WC20N+1 

IF ((K.GT.NC20N).AND.(M0D(KSTEP,NC2SZ).EQ.O)) THEN 

THIS IS THE END OF THE CURRENT WINDOW. AFTER GETTING 

THE FINAL STATISTIC AND SAVING IT, PERFORM SOME 

INITIALIZATION FOR THE START OF THE NEXT WINDOW. 

WRITE(6,101)K 

WRITE(6,102)CHI(NC2INC),ND0F(NC2INC), 

CHITBL(ND0F(NC2INC),L0CSIZ(1)) 
L0CATE=K-NC2SZ 
JST0P=NC2SZ-1 

DO 41 J=1,JST0P 

JSTEP=LOCATE + J 

HERRN(J)=DSQRT((XACTN(1,JSTEP)-XETRAJ(1,JSTEP))* * 2 

+ (XACTN(3,JSTEP)-XETRAJ(3,JSTEP))**2) 

HERRD(J)=DSqRT((XACTD(l, JSTEP)-XDTRAJd, JSTEP)) **2 

+ (XACTD(3,JSTEP)-XDTRAJ(3,JSTEP))**2) 
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CONTINUE 

HERRN(NC2SZ)=DSQRT((XTRUEN(1,1)-XHAT(1,1))**2 

+ (XTRUEN(3,1)-XHAT(3,1))**2) 

HERRD(NC2SZ)=DSqRT((XTRUED(1,1)-XDETCl,1))**2 

+ (XTRUED(3,1)-XDET(3,1))**2) 

WRITE(6,103)(HERRM(J),J=1,NC2SZ) 

WRITE(6,104)(HERRD(J),J=1,NC2SZ) 

NC2IMC=NC2INC + 1 

CHI(NC2INC)=0.D0 

ND0F(NC2INC)=O 

EWDIF 

ENDIF 

C 

C 

101 F0RMAT(/1X,15('*'),'DET. FILTER RESIDUAL TESTS AT STEP K=', 

1 I6,1X,15('*')) 

102 FORMATClX,'CHI-SQR=',F9.2,1X,'D0F=',I4, 

1 3X,'THRESH=',F9.3) 

103 FORMATClX,'NAV RAD ERR:',11(IX.F9.1)) 

104 FORMATClX,'DET RAD ERR :',11ClX,F9.1)) 

C 

RETURN 

END 

C 

SUBROUTINE PROJECCK) 

C 

C THE CURRENT ESTIMATE OF THE STATE VECTOR AND THE CURRENT 

C ERROR COVARIANCE ARE PROJECTED AHEAD TO THE NEXT TIME 

C STEP TO BE USED AS A PROIRI ESTIMATES ON THE NEXT STEP. 

C THE TRUE PROCESS XTRUE IS ALSO PROJECTED HERE. 

C 

IMPLICIT REAL*8 CA-H,0-Z) 

C 

COMMON /C2/ H,PHI,PHITR,P,Q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEN,XTRUED 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,qTRUE,NULLB 

REAL*8 HC9,9),PHlC9,9),PHITRC9,9),PC9,9),QC9 ,9) 

REAL*8 RT.RF,ZNC9,1),ZDC9,1),WC44,1),VC44,1),XHATC9,1) 

REAL*8 XTRUEN(44,1),XTRUEDC44,1),WN0ISC44,1200),VNOISC9,1200) 

41 

1 

1 

C 
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REAL*8 HTRUE(44,44),PHITRU(44,44),QTRUE(44,44),NULLB(44,44) 

C 

COMMON /C3/ TIME, OFFSET, DELTAT,NSTEPS,ÎISATS,ÏÏSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,N 0 S A 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 

COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 

1 NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

C 

COMMON /CIO/ XDET,PDET,QDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,qY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),QDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,1),HY(9,2),PHIY(9,2),PHIYT(9,2),qY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

COMMON /C14/ PERIOD,BMKANG,ACCEL,RADFRQ,VELCTY,NTURQN,NTUROF 

REAL*8 PERIOD,BNKANG,ACCEL,RADFRQ,VELCTY 

INTEGER NTURON,NTUROF 
C 

INTEGER K 

C 

REAL*8 PTM(9,9),TMPTM(9,9) 

REAL*8 PHIXT(44,1),TURN(44,1) 

C 

C PROJECT XTRUE 

C 

IF (NONOIS.EQ.l) THEN 

CALL SUM(MRXT,0,W,NRXT,1,NULLB,NULLE) 

ELSE 
DO 10 1=1,NRXT 

W(I,1)=WN0IS(I,K) 

10 CONTINUE 
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ENDIF 

C 

CALL MULT(MRXT,0,PHIXT,0,PHITRU,NRXT,NRXT,XTRUEN,NRXT,1) 

CALL SUM(MRXT,0,XTRUEN,NRXT,1,PHIXT,W) 

C 

CALL MULT(MRXT,0,PHIXT,0,PHITRU,NRXT,MRXT,XTRUED,NRXT,1) 

CALL SUM(MRXT,0,XTRUED,NRXT,1,PHIXT,W) 

C 

IF ((NTURON.EQ.l).AND.(K.LT.NTUROF)) THEN 

C 

C NOW ADD TO THE TRUE VECTORS THE CONTRIBUTION OF THE TURN 

C 

CALL SUM(MRXT,0,TURN,MRXT,1,WULLB,NULLE) 

C 

ARGTK=TIME*RADFRQ 

ACDW=ACCEL/RADFRQ 

ACDWSQ=ACDW/RADFRQ 

WDELT=RADFRq*DELTAT 

SCALE1=DSIM(WDELT) - WDELT 

SCALE2=1 - DCOS(WDELT) 

P0SSF1=ACDWSQ*SCALE1 

P0SSF2=ACCEL*SCALE2 

VELSF1=ACDW*SCALE2 

VELSF2=ACDW*DSIN(WDELT) 

C 

TURN(1,1)=P0SSF1*DSIN(ARGTK)+P0SSF2*DC0S(ARGTK) 

TURN(2,1)=-VELSFl*DSIN(ARGTK)+VELSF2 *DCOS(ARGTK) 

TURN(3,1)=-POSSF1*DCOS(ARGTK)+POSSF2*DSIM(ARGTK) 

TURN(4,1)=VELSF1*DC0S(ARGTK)+VELSF2*DSIN(ARGTK) 

C 

CALL ADDON(MRXT,XTRUEN,NRXT,1,TURN) 

CALL ADDON(MRXT,XTRUED,NRXT,1,TURN) 

C 

ENDIF 

C 

C PROJECT THE NAVIAGION FILTER ESTIMATE XHAT 

C 

CALL MULTBY(MRXH,PHI,NRXH,NRXH,XHAT,NRXH,1) 

C 
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C PROJECT THE NAVIGATION FILTER COVARIANCE MATRIX 

C 

CALL MULT(MRXH,0,PTM,1,P,NRXH,NRXH,PHITR,WRXH,NRXH) 

CALL MULT(MRXH,0,TMPTM,0,PHI,NRXH,NRXH,PTM,NRXH,NRXH) 

CALL SUMHAF(MRXH,P,NRXH,NRXH,TMPTM,Q) 

C 

C PROJECT DETECTION FILTER ESTIMATE XDET 

C 

CALL MULTBY(MRXH,PHID,NRXD,NRXD,XDET,MRXD,1) 

C 

C PROJECT THE DETECTION FILTER COVARIANCE MATRIX 

C 

CALL MULT(MRXH,0,PTM,1,PDET,NRXD,MRXD,PHIDTR,NRXD,NRXD) 

CALL MULT(MRXH,0,TMPTM,0,PHID,NRXD,NRXD,PTM,NRXD,NRXD) 

CALL SUMHAF(MRXH,PDET,NRXD,NRXD,TMPTM,QDET) 
C 

IF (NCOAST.EQ.l) THEN 

C 

C PROJECT YHAT 

C 

CALL MULTBY(MRXH,PHIY,2,2,YHAT,2,1) 

C 

C PROJECT PY 

C 

CALL MULT(MRXH,0,PTM,1,PY,2,2,PHIYT,2,2) 

CALL MULT(MRXH,0,TMPTM,0,PHIY,2,2,PTM,2,2) 

CALL SUMHAF(MRXH,PY,2,2,TMPTM,QY) 

C 

C PROJECT PXY 

C 

CALL MULT(MRXH,0,PTM,0,PXY,NRXD,2,PHIYT,2,2) 

CALL MULT(MRXH,0,PXY,0,PHID,NRXD,NRXD,PTM,NRXD,2) 

C 

ENDIF 

C 

RETURN 

END 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 
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CCCCC 

CCCCC 

CCCCC 

END OF KALMAW FILTER SUBROUTINES 

CCCCC 

CCCCC 

CCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

c 

SUBROUTINE GETCHI(NSTART) 

c 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,M 0 SA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 

1 N0N0IS,NPE,NC2INC,NC2SZ,NC20N,NGE0M,NGMSZ,NG0N,NGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,KDOF,NDFSTP,NDISAT,KDISTP,HOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(10) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATC0N(9) 

INTEGER NDOF(120),NDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 
C 

INTEGER NSTART 

C 

REAL*8 HPHRIN(9,9),RESID(9,1),RESTRA(9,9) 

REAL*8 ZHPHR(9,9),ZHPHRZ(9,1) 

C 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

NOW BEGIN THE CENSORED FILTER SUBROUTINES. 

THEY ARE: GETCHI,DECIDE,PREDCT 

NEWVAU,NEWVAS,NEWU,NEWUT 

HISTRY,HYPOTH,ELLIPS,LABEL 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 

CCCCC 
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C FIRST ZERO OUT CHISAT VECTOR 

C 

DO 1 MR=1,NRZ 

SATCHI(NR)=O.DO 

1 CONTINUE 

C 

DO 10 NSTP=NSTART,NWSIZE 

C 

C LOAD UP THE INVERSE OF THE RESIDUAL COVARIANCE 

C 

DO 20 NC=1,NRZ 

DO 20 NR=1,NRZ 

HPHRIN(NR,NC)=VARIMV(Na,MC,MSTP) 

20 CONTINUE 

C 

C MOW GRAB A COLUMN FROM VBLKA 

C 

DO 30 NR=1,NRZ 

RESID(NR,1)=VBLKA(NR,NSTP) 

30 CONTINUE 

C 

C FORM THE CHI-SQUARE STAT FOR EACH STEP 

C 

CALL TRANSP(MRXH,RESTRA,1,NRZ,RESID,NRZ,1) 

CALL MULT(MRXH,0,ZHPHR,0,RESTRA,1,NRZ,HPHRIN,NRZ,NRZ) 

CALL MULT(MRXH,0,ZHPHRZ,0,ZHPHR,1,NRZ,RESID,NRZ,1) 

C 

C LOAD UP THE CHI-SQUARE FOR THIS STEP 

C 

STPCHI(NSTP)=ZHPHRZ(1,1) 

C 

C NOW FORM THE CHI-SQUARE FOR EACH SATELLITE 

C 

DO 40 NR=1,NRZ 

SATCHI(IJR)=SATCHI(NR)+RESID(NR,1)**2/RESVAR(NR,NSTP) 

40 CONTINUE 

C 

10 CONTINUE 

C 
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RETURN 

END 

C 
SUBROUTINE DECIDE(NSTART.MODE) 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 

1 NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,NDOF,NDFSTP,NDISAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(10) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATC0N(9) 

INTEGER NDOF(120),NDFSTP(10),ND1SAT(9),NDISTP(IO),NOERR,NALOUT 

C 

COMMON /C12/ CHITBL,TBLSIZ,TBLDOF,LOCSIZ 

REAL*8 CHITBL(66,54),TBLSIZ(54),TBLD0F(66),L0CSIZ(4) 

C 

INTEGER NSTART 

C 

IF ((NALOUT.Eq.l).AND.(MODE.EQ.1)) WRITE(6,14)NSTART 
IF (NALOUT.EQ.l) WRITE(6,11)NSTART,STAT,NUMDOF,THRESH 

C 

C FIRST ZERO OUT THE DECISION VECTORS 

C 

DO 50 NWK=NSTART,NWSIZE 

ND1STP(NWK)=0 

50 CONTINUE 

C 

DO 60 NR=1,NRZ 
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ND1SAT(NR)=0 

60 CONTINUE 

C 

DO 10 I=NSTART,NWSIZE 

C 

C TEST CHI-SQUARE STAT AT EACH STEP 

C 

NUMDOF=NDFSTP(I) 

STAT=STPCHI(I) 

THRESH=CHITBL(NUMDOF,LOGSIZ(2)) 

C 

IF (NALOUT.EQ.l) WRITE(6,12)1,STAT,NUMDUF,THRESH 

C 

IF (STAT.LE.THRESH) THEN 
ND1STP(I)=0 

ELSE 
ND1STP(I)=1 

ENDIF 

C 

10 CONTINUE 

C 

DO 20 NR=1,NRZ 

C 

C TEST CHI-SQUARE STAT FOR EACH SATELITTE 

C 

NUMDQF=NWSIZE-NSTART+1 

STAT=SATCHI(NR) 

THRESH=CHITBL(NUMD0F,L0CSIZ(3)) 

C 

IF (NALOUT.EQ.l) WRITE(6,13)NR,STAT,NUMDOF,THRESH 
C 

IF (STAT.LE.THRESH) THEN 

ND1SAT(NR)=0 

ELSE 

ND1SAT(NR)=1 

ENDIF 
C 

20 CONTINUE 

C 
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ÎI0ERR=0 

IF (MODE.EQ.O) THEN 
ND1=0 

DO 70 NC=1,NWSIZE 

DO 70 NR=1,NRZ 

IF ((ND1SAT(NR).EQ.1).AND.(ND1STP(NC).EQ.1)) ND1=1 

70 CONTINUE 

IF (NDl.EQ.O) N0ERR=1 

ENDIF 

C 

C NOW SUPPOSE THAT WE ONLY ALLOW FOR ONE MEASUREMENT 

C SOURCE TO BE ALTERED. ONLY SET THE DECISION TO 1 IN 

C THE LARGEST OF THOSE SOURCES WHICH HAD A D1 DECISION 

C IN THE TIME SERIES. 

C 

CHIMAX=O.DO 

NLARGE=0 

DO 30 NR=1,NRZ 

IF (NDISAT(NR).Eq.l) THEN 

IF (SATCHI(NR).GT.CHIMAX) THEN 

CHIMAX=SATCHI(NR) 

NLARGE=NR 

ENDIF 

ENDIF 

30 CONTINUE 
C 

C NOW ZERO OUT THE OTHER SOURCES. 

C 

DO 40 NR=1,NRZ 

IF (NR.NE.NLARGE) ND1SAT(NR)=0 

40 CONTINUE 

C 

14 FORMATdX,'STATISTICS AFTER REMOVING S ' , 12 , 2X, ' ARE : ' ) 

11 F0RMAT(4X,'WINDOW CHI AT NW',12,IX,'=',F9.3,2X, 

1 'D0F=',I2,2X,'THRESH=',F9.3) 

12 FORMAT(4X,'STEP CHI AT NW ',12,IX,'=',F9.3,2X, 

1 'D0F=',I2,2X,'THRESH=',F9.3) 

13 FORMAT(4X,'SAT CHI FOR ROW ' ,12,IX,' = ',F9.3,2X, 

1 'D0F=',I2,2X,'THRESH=',F9.3) 
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C 
RETURN 

END 

C 

SUBROUTINE PREDCT(S,NSTART) 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 

COMMON /C8/ NERRON,NERROF,NHYPOM,NWINDW,NWINC,NWSIZE,WCOAST, 

1 NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGE0M,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGQN,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,NDOF,NDFSTP,NDISAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(IO) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATCON(9) 

INTEGER ND0F(120),NDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 
C 

INTEGER NSTART 

REAL*8 S(9,1) 

REAL*8 F(10,2),FT(10,10),FSq(10,2),FSqiNV(10,2),FCON(10,10) 

REAL*8 DATA(10,1),XLS(10,1) 

INTEGER ND1MAT(9,10) 

C 

C GET THE NDIMAT WHICH IS THE CENSORING MAP 

C 

DO 5 NC=NSTART,NWSIZE 

DO 5 NR=1,NRZ 

IF ((NDlSTP(NC).Eq.l).AND.(NDlSAT(NR).EQ.l)) THEN 
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ND1MAT(NR,NC)=1 

ELSE 

ND1MAT(WR,MC)=0 

ENDIF 

5 CONTIIIUE 

C 

IF (NDISTP(NSTART).EQ.l) THEM 

DO 10 MR=1,MRZ 

IMC=0 

IF (NDISAT(MR).EQ.l) THEM 

LOC=MSTART 

INC=IMC+1 

DATA(IMC,1)=VBLKA(NR,L0C) 

F(IMC,1)=1.D0 

F(IMC,2)=FLOAT(INC-1)*DELTAT 

LOCSTR=LOC+1 

IF (NSTART.EQ.NWSIZE) THEN 

S(NR,1)=VBLKA(WR,NWSIZE) 

GO TO 21 

ENDIF 

DO 20 J=LOCSTR,MWSIZE 

IF (ND1MAT(NR,J).EQ.1) THEN 
INC=INC+1 

DATA(IMC,1)=VBLKA(MR,J) 

F(INC,1)=1.D0 

F(INC,2)=FL0AT(IMC-1)*DELTAT 

ELSE 

IF (INC.EQ.l) THEN 

S(NR,1)=DATA(1,1) 

ELSE 

CALL TRAMSP(10,FT,2,INC,F,IMC,2) 

CALL MULT(10,l,FSq,0,FT,2,INC,F,INC,2) 

CALL INVERT(l0,0,FSqiWV,2,FSq) 

CALL MULT(10,0,FC0N,l,FSqiMV,2,2,FT,2,IMC) 

CALL MULT(10,0,XLS,0,FCON,2,IMC,DATA,INC,1) 

S(NR,1)=XLS(1,1) 

ENDIF 

GO TO 21 

ENDIF 
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IF (J.EQ.MWSIZE) THEN 

CALL TRANSP(10,FT,2,INC,F,INC,2) 

CALL MULTCl0,l,FSq,0,FT,2,INC,F,IMC,2) 

CALL INVERT(l0,0,FSqiNV,2,FSQ) 

CALL MULT(10,0.FCON,1,FSQINV,2,2,FT,2,INC) 

CALL MULT(10,0,XLS,0,FCON,2,INC,DATA,INC,1) 
S(NR,1)=XLS(1,1) 

ENDIF 

20 CONTINUE 

21 CONTINUE 

ELSE 
S(NR,1)=0.D0 

ENDIF 

10 CONTINUE 

ELSE 

CALL SUM(MRZ,0,S,MRZ,1,NULL,NULL) 

ENDIF 

C 

RETURN 

END 

C 

SUBROUTINE NEWVAU 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,MSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /C6/ A,B,C,D,U,AT,BT,UT 

REAL*8 A(9,9,10,10),B(9,9,10),C(9,9,10,10),D(9,9,10),U(9,1) 

REAL+8 AT(9,9,10,10),BT(9,9,10),UT(9,1) 

C 

COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,MWINC,NWSIZE,NCOAST, 

1 N0NGIS,NPE,NC2IMC,NC2SZ,NC20N,NGE0M,NGMSZ,NG0N,NGSZ 

INTEGER NERRON,NERROF,MHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER N0N0IS,NPE,KC2INC,NC2SZ,NC20N,MGE0M,NGMSZ,MG0N,NGSZ 
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C 
COMMON /C9/ VSAVE.VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,NDOF,NDFSTP,NDISAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(10) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATC0N(9) 

INTEGER ND0F(12O),NDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 

C 

COMMON 10.121 CHITBL,TBLSIZ,TBLDOF,LOCSIZ 
REAL*8 CHITBL(66,54),TBLSIZ(54),TBLD0F(66),L0CSIZ(4) 

C 

REAL*8 D2D(9,9),C0NN(9,1) 

C 

DO 10 NSTP=1,NWSIZE 

C 

C GET THE CONNECTION OF UO AT STEP=NSTP 

C 

DO 20 NC=1,NRXD 

DO 20 NR=1,NRZ 

D2D(NR,NC)=D(NR,NC,NSTP) 

20 CONTINUE 

C 

CALL MULT(MRXH,0,CONN,0,D2D,NRZ,NRXD,U,NRXD,1) 

C 

C LOAD UF VBLKA 

C 

DO 30 NR=1,ÎIRZ 

VBLKA(NR,NSTP)=VBLK(NR,NSTP) + C0NN(NR,1) 

30 CONTINUE 

C 

10 CONTINUE 

C 

RETURN 

END 

C 

SUBROUTINE NEUVAS(S,NSTART) 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 
COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW.NSATID, 
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1 MRXT,MRXT,MRXH,MRXH,MRXD,MRZ,NRZ,MOSA 

REAL+8 TIME,OFFSET,DELTAT 

INTEGER MSTEPS,NSATS,MSATW(10),MSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,MRXD,MRZ,MRZ,NOSA 

C 

COMMON /C6/ A,B,C,D,U,AT,BT,UT 

REAL*8 A(9,9,10,10),B(9,9,10),C(9,9,10,10),D(9,9,10),0(9,1) 

REAL*8 AT(9,9,10,10),BT(9,9,10),UT(9,1) 

C 

COMMON /C8/ MERRON,NERROF.NHYPON,NWINDW,NWINC,NWSIZE.NCOAST, 

1 M0N0IS,NPE,NC2INC,NC2SZ,MC20M,MGE0M,NGMSZ,NG0N,NGSZ 

INTEGER MERRON,MERROF,MHYPON,NWINDW,NWINC,NWSIZE,MCOAST 

INTEGER N0N0IS,NPE,NC2INC,NC2SZ,MC20N,NGE0M,NGMSZ,NG0N,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,MDOF,NDFSTP,NDISAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(IO) 

REAL*8 VBLKA(9,10),VARIMV(9,9,10),RESVAR(9,10),SATC0M(9) 

INTEGER MD0F(12O),MDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 

C 

COMMON /C12/ CHITBL,TBLSIZ,TBLDOF,LOCSIZ 

REAL*8 CHITBL(66,54),TBLSIZ(54),TBLD0F(66),L0CSIZ(4) 

C 

REAL*8 S(9,l) 

INTEGER NSTART 

C 

REAL*8 C2D(9,9),C0NN(9,1) 

C 

DO 10 NSTP=NSTART,NWSIZE 

C 

C GET THE CONNECTION OF S AT STEP=NSTP 

C 

DO 20 NC=1,MRZ 

DO 20 NR=1,NRZ 

C2D(MR, NC)=C(NR,NC,NSTART,NSTP) 

20 CONTINUE 

C 

CALL MULT(MRXH,0,CONN,0,C2D,NRZ,NRZ, S , MRZ , 1 ) 

C 
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C LOAD UP VBLKA 

C 
DO 30 WR=1,NRZ 

VBLKA(MR,NSTP)=VBLKA(NR,NSTP) + C0NN(NR,1) 

30 CONTINUE 

C 

10 CONTINUE 

C 

RETURN 

END 

C 

SUBROUTINE NEWU(NSTOP,UNEW) 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,MSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /G6/ A,B,C,D,U,AT,BT,UT 

REAL*8 A(9,9,10,10),B(9,9,10),C(9,9,10,10),D(9,9,10),U(9,1) 

REAL+8 AT(9,9,10,10),BT(9,9,10),UT(9,l) 

C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 

COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 

1 NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGE0M,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI.STPCHI,VBLKA,VARINV.RESVAR, 

1 SATCON,NDOF,NDFSTP,NDISAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(lO) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATCON(9) 

INTEGER ND0FC120),NDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 

C 
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COMMON /C13/ SMAT,PWOFFN,PWOFFD 

REAL*8 SMAT(9,10),PW0FFN(10),PW0FFD(10) 

C 
REAL*8 UNEW(9,1) 

REAL*8 A2D(9,9),B2D(9,9),CQNN(9,1),XSUM(9,1),S(9,l) 

C 

C FIRST ZERO OUT XSUM 

C 

CALL SUM(MRXH,0,XSUM,NRXD,1,NULL,NULL) 

C 

IF (NOERR.EQ.l) GO TO 11 

DO 10 NSTP=1,NST0P 

C 

C GRAB A COLUMN OF SMAT 

C 

DO 15 NR=1,NRZ 

S(NR,1)=SMAT(NR,NSTP) 

15 CONTINUE 

C 

C GET THE CONNECTION OF S INTO XDET ALPHA AT NSTEP=NWSIZE 

C 

DO 20 NC=1,WRZ 

DO 20 NR=1,NRXD 

A2D(MR,MC)=A(NR,NC,HSTP,MSTOP) 

20 CONTINUE 

C 

CALL MULT(MRXH,0,CONN,0,A2D,NRXD,NRZ,S,WRZ,1) 

C 

C ADD THE CONNECTION TO XSUM 

C 

CALL ADDON(MRXH,XSUM,NRXD,1,CONN) 

C 

10 CONTINUE 

11 CONTINUE 

C 

C NOW GET THE CONNECTION OF UO INTO XSUM 

C 

DO 30 NC=1,NRXD 

DO 30 NR=1,NRXD 
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B2D(MR,NC)=B(NR,MC,NST0P) 

30 CONTINUE 

C 

CALL MULT(MRXH,0,CONN,0,B2D.NRXD,NRXD,U,NRXD,1) 

C 

CALL SUM(MRXH,0,UNEW,NRXD,1,CONN,XSUM) 

C 

RETURN 

END 

C 

SUBROUTINE NEWUT(NSTOP,UNEW) 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW.NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,MRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

C 

COMMON /C6/ A,B,C,D,U,AT,BT,UT 

REAL*8 A(9,9,10,10),B(9,9,10),C(9,9,10,10),D(9,9,10),U(9,1) 

REAL*8 AT(9,9,10,10),BT(9,9,10),UT(9.1) 

C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL+8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 

COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 

1 NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,NDOF,NDFSTP,NDlSAT,MD1STP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(IO) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATC0N(9) 

INTEGER NDOF(120),NDFSTP(10),ND1SAT(9),ND1STP(10),NOERR,NALOUT 

C 
COMMON /C13/ SMAT,PWOFFN,PWOFFD 
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REAL*8 SMAT(9,10),PWOFFM(10),PW0FFD(10) 

C 
REAL*8 UNEW(9,1) 

REAL*8 A2D(9,9),B2D(9,9),CONN(9,1),XSUM(9,1),S(9,1) 

C 

C FIRST ZERO OUT XSUM 

C 

CALL SUM(MRXH,0,XSUM,NRXH,1,NULL,NULL) 

C 

IF (NOERR.EQ.l) GO TO 11 

DO 10 NSTP=1,NST0P 

C 

C GRAB A COLUMN OF SMAT 

C 

DO 15 NR=1,NRZ 

S(WR,1)=SMAT(NR,NSTP) 

15 CONTINUE 

C 

C GET THE CONNECTION OF S INTO XDET ALPHA AT NSTEP=NWSIZE 

C 

DO 20 NC=1,NRZ 

DO 20 NR=1,NRXH 

A2D(NR,NC)=AT(NR,NC,NSTP,NST0P) 

20 CONTINUE 

C 

CALL MULT(MRXH,0,CONN,0,A2D,NRXH,NRZ,S,NRZ,1) 

C 

C ADD THE CONNECTION TO XSUM 

C 

CALL ADDON(MRXH,XSUM,NRXH,1,CONN) 

C 

10 CONTINUE 

11 CONTINUE 

C 

C NOW GET THE CONNECTION OF UO INTO XSUM 

C 

DO 30 NC=1,NRXH 

DO 30 NR=1,NRXH 

B2D(WR.NC)=BT(NR,NC,NST0P) 
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30 CONTINUE 

C 

CALL MULT(MRXH,0,CONN,0,B 2D,NRXH,NRXH,UT,NRXH,1) 

C 

CALL SUM(MRXH,0,UNEW,NRXH,1,CONN,XSUM) 

C 

RETURN 

END 

C 

SUBROUTINE HISTRY(K) 

C 

IMPLICIT REAL*8 (A-H,0-Z) 

C 

COMMON /C2/ H,PHI,PHITR,P,Q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEN,XTRUED 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,QTRUE,NULLE 

REAL*8 H(9,9),PHI(9,9),PHITR(9,9),P(9,9),Q(9,9) 

REAL*8 RT,RF,ZN(9,1),ZD(9,1),W(44,1),V(44,1),XHAT(9,1) 

REAL*8 XTRUEN(44,1),XTRUED(44,1),WN0IS(44,1200),VNOIS(9,1200) 

REAL*8 HTRUE(44,44),PHITRU(44,44),qTRUE(44,44),NULLE(44,44) 

C 

COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW,NSATID, 

1 MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 

REAL+8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,NSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,NRXT,MRXH,NRXH,NRXD,MRZ,NRZ,NOSA 
C 

COMMON /es/ XACTN,XACTD,XETRAJ,PTRAJ,XDTRAJ,PDTRAJ 

REAL*8 XACTN(44,1200),XACTD(8,1200),XETRAJ(8,1200) 

REAL*8 PTRAJ(8,1200),XDTRAJ(8,1200),PDTRAJ(8,1200) 

C 

COMMON /C6/ A,B,C,D,U,AT,BT,UT 

REAL*8 A(9,9,10,10),B(9,9,10),C(9,9,10,10),D(9,9,10),U(9,1) 

REAL*8 AT(9,9,10,10),BT(9,9,10),UT(9,1) 

C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 
COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 

1 N0N0IS,NPE,NC2INC,NC2SZ,NC20N,NGE0M,NGMSZ,NG0N,NGSZ 
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INTEGER WERRON,NERROF,NHYPOM,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,NC20N,NGEOM,NGMSZ,NGON,NGSZ 
C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCON,NDOF,NDFSTP,NDISAT,NDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200) ,VBLK(9,10),CHI(120) ,SATCHI(9) .STPCHKlO) 

REAL*8 VBLKA(9,10),VARINV(9,9,10),RESVAR(9,10),SATCON(9) 

INTEGER ND0F(120) .NDFSTPdO) ,ND1SAT(9) ,ND1STP(10) ,NOERR,NALOUT 

C 

COMMON /CIO/ XDET,PDET,qDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,QY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),QDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,1),HY(9,2),PHIY(9,2),PHIYT(9,2),QY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

COMMON /C12/ CHITBL,TBLSIZ,TBLDOF,LOCSIZ 

REAL*8 CHITBL(66,54),TBLSIZ(54),TBLD0F(66),L0CSIZ(4) 

C 

COMMON /C13/ SMAT,PWOFFN,PWOFFD 

REAL*8 SMAT(9,10),PWOFFN(lO),PW0FFD(10) 

C 

REAL*8 XLA(9,1),XSUM(9,1),VSUM(9,1),S(9,1),XTLA(9,1) 

REAL*8 UNEW(9,1),UTNEW(9,1) 

REAL*8 RNAVV(IO),RINAVV(10),RDIST(10),STATS(10) 

INTEGER NUMROW(IO),NUMC0L(10) 
C 

BIGSIG=O.DO 

SMLSIG=1.D3C 

C 

DO 10 NWK=1,NWSIZE 

C 

C LOCATE WILL POINT TO THE LOCATION OF PREVIOUS 

C ESTIMATES AND COVARIANCES IN THE STORAGE ARRAYS. 
C 

L=K-NWSIZE+NWK 

C 

C CALCULATE THE RESPONSE OF SMAT IN THE DETECTION AND 

C NAVIGATION FILTERS. 

C 
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CALL NEWU(MWK,UWEW) 

CALL NEWUT(NWK,UTMEW) 

MOW ADD RESPONSE OF SMAT TO THE NAVIGATION FILTER 

ESTIMATE AND THE DETECTION FILTER ESTIMATE. 

ONLY THE X AND Y POSITION COMPONENTS ARE COMPUTED. 

XTLA(1,1)=XETRAJ(1,L)+UTNEW(1,1) 

XTLA(3,1)=XETRAJ(3,L)+UTNEW(3,1) 

XLA(1,1)=XDTRAJ(1,L)+UNEW(1,1) 

XLA(3,1)=XDTRAJ(3,L)+UNEW(3,1) 

NOW CALCULATE THE RADIAL ERRORS ASSOCIATED WITH THE 

ESTIMATED AND THE TRUE VALUES. 

RNAV=DSQRT((XACTN(1,L)-XETRAJ(1,L))* *2 + 

(XACTN(3,L)-XETRAJ(3,L))**2) 

RDET= DSQRT((XACTD(1,L)-XDTRAJ(1,L))**2 + 

(XACTD(3,L)-XDTRAJ(3,L))**2) 

RINAV=DSQRT((XACTN(1,L)-XTLA(1,1))**2 + 

(XACTN(3,L)-XTLA(3,1))**2) 

RIDET=DSQRT((XACTD(1,L)-XLA(1,1))**2 + 

(XACTD(3,L)-XLA(3,1))**2) 

RNAVV(MWK)=RNAV 

RINAVV(NWK)=RINAV 

RDIST(NWK)=DSqRT((XTLA(l,l)-XETRAJ(l,L))**2 + 

(XTLA(3,1)-XETRAJ(3,L))**2) 

IF (PTRAJ(1,L).GT.BIGSIG) BIGSIG=PTRAJ(1,L) 

IF (PTRAJ(3,L).GT.BIGSIG) BIGSIG=PTRAJ(3,L) 

IF (PTRAJ(1,L).LT.SMLSIG) SMLSIG=PTRAJ(1,L) 

IF (PTRAJ(3,L).LT.SMLSIG) SMLSIG=PTRAJ(3,L) 

CORCOF=PWOFFN(NWK)/(PTRAJ(1,L)*PTRAJ(3,L)) 

IF (NALOUT.EQ.l) THEN 
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NOW PRINT OUT THE ESTIMATES AND RADIAL ERRORS. 

WRITE(6,104)L 

WRITE(6,44)XETRAJ(1,L),XETRAJ(3,L),PTRAJ(1,L) 

WRITE(6,45)XTLA(1,1),XTLA(3,1),PTRAJ(3,L) 

WRITE(6,46)XACTN(1,L),XACTN(3,L),CORCOF 

CORCOF=PWOFFD(NWK)/(PDTRAJ(1,L)*PDTRAJ(3,L)) 

WRITE(6,144)XDTRAJ(1,L),XDTRAJ(3,L),PDTRAJ(1,L) 

WRITE(6,145)XLA(1,1),XLA(3,1),PDTRAJ(3,L) 

WRITE(6,146)XACTD(1,L),XACTD(3,L),CORCOF 

WRITE(6,51)RNAV 

WRITE(6,53)RINAV 

WRITE(6,52)RDET 

WRITE(6,54)RIDET 

ENDIF 

NOW CALCULATE THE TEST STATISTIC 

X3=(XETRAJ(1,L)-XTLA(1,1))/2.DO 

Y3=(XETRAJ(3,L)-XTLA(3,1))/2.DO 

DELTAX=(X3/PTRAJ(1,L))**2 

DELTAY=(Y3/PTRAJ(3,L))* * 2 

CROSS=(X3*Y3)*PWOFFN(NWK)/(PTRAJ(1,L)*PTRAJ(3,L))**2 

CORR=PWOFFD(NWK)/(PTRAJ(l,L)*PTRAJ(3,L))**2 

TEST=(DELTAX-0.5DO*CROSS+DELTAY)/(1.DO-CORR**2) 

STATS(NWK)=TEST 

LOCATE THE THRESHOLD 

IF (NWK.EQ.l) THRESH=CHITBL(2,L0CSIZ(4)) 

IF (NALOUT.EQ.l) THEN 
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IF (TEST.GT.THRESH) THEN 

WRITE(6,103)TEST,THRESH 

ELSE 

WRITE(6,102)TEST,THRESH 

ENDIF 

EMDIF 
C 

10 CONTINUE 

C 

C NOW SAVE THE LAST UMEW AMD UTMEW AS THE STATE 

C ESTIMATE BIAS FOR U AND UT IN THE NEXT WINDOW 
C 

CALL SUM(MRXH,0,U,NRXD,1,UMEW,NULL) 

CALL SUM(MRXH,0,UT,NRXH,1,UTMEW,NULL) 

C 

C 

MUMMZR=0 

DO 20 NR=1,MRZ 

DO 30 MC=1,NWSIZE 

IF (SMAT(NR,NC).NE.O.DO) THEN 

NUMNZR=NUMNZR+1 

NUMROW(NUMNZR)=MR 

GO TO 35 

ENDIF 

30 CONTINUE 

35 CONTINUE 

20 CONTINUE 

C 

NUMNZC=0 

DO 21 NC=1,MWSIZE 

DO 31 NR=1,NRZ 

IF (SMAT(NR,NC).NE.O.DO) THEN 
NUMNZC=NUMNZC+1 
NUMCOL(MUMNZC)=NC 

GO TO 36 

ENDIF 

31 CONTINUE 

36 CONTINUE 

21 CONTINUE 
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C 
PR0TMX=3.0*BIGSIG*DSQRT(THRESH) 

PR0TMN=3.0*SMLSIG*DSQRT(THRESH) 

C 

WRITE(6,152)(RWAVV(I),I=1,NWSIZE) 

WRITE(6,153)(RINAVV(I),I=1,NWSIZE) 

WRITE(6,154)(RDIST(I),1=1,WWSIZE) 

WRITE(6,15 S)(STATS(I),1=1,NWSIZE) 

WRITE(6,151)THRESH,BIGSIG,PROTMX,SMLSIG,PROTMN,CORCOF 

IF (NUMNZR.NE.O) WRITE(6,156)(NUMROW(I),1=1,NUMNZR) 

IF (NUMNZC.NE.O) WRITE(6,157)(NUMCOL(I),1=1,NUMNZC) 

C 

151 FORMATdX,'THRESH=',F6.2,1X,'MAX SIG= ' , F6 .1, IX, 

1 'MAX PROT=',F6.1,'m',2X,'MIN SIG=',F6.1,IX, 

2 'MIN PR0T=',F6.1,'m',2X,'RH0=',F6.3) 

152 FORMATdX,'TRUTH AND NAV ' , 8X,9X, 10(F7 . 2 , IX) ) 

153 FORMATdX,'TRUTH AND CENSORED ' , SX ,4X, 10(F7. 2 , IX) ) 

154 FORMATdX,'NAV AND CENSORED', SX,6X, 10(F7. 2 , IX) ) 

155 FORMATdX,'TEST STATISTIC ' ,SX,SX, 10(F7. 2 , IX) ) 

156 FORMATdX,'ROW NUMBERS OF NON-ZERO ROWS IN SMAT: ',10(12, IX)) 

157 FORMATdX,'COL NUMBERS OF NON-ZERO COLS IN SMAT: ',10(12, IX)) 
C 

104 FORMATdX,'RESULTS AT STEP K=',I5,/) 

C 

RETURN 

END 

C 

SUBROUTINE HYPOTH(K) 

C 

IMPLICIT REALMS (A-H,0-Z) 

C 

COMMON /C2/ H,PHI,PHITR,P,q,RT,RF,ZN,ZD,W,V,XHAT,XTRUEN,XTRUED 

1 ,WNOIS,VNOIS,HTRUE,PHITRU,QTRUE,NULLB 

REAL*8 H(9,9),PHI(9,9),PHITR(9,9),P(9,9),Q(9,9) 

REAL*8 RT,RF,ZN(9,1),ZD(9,1),W(44,1),V(44,1),XHAT(9,1) 

REAL*8 XTRUEN(44,1),XTRUED(44,1),WN0IS(44,1200),VNOIS(9,1200) 

REAL*8 HTRUE(44,44),PHITRU(44,44),QTRUE(44,44),NULLB(44,44) 

C 
COMMON /C3/ TIME,OFFSET,DELTAT,NSTEPS,NSATS,NSATW.NSATID, 
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1 MRXT,NEXT,MRXH,NRXH,WRXD,MRZ,NRZ,WOSA 

REAL*8 TIME,OFFSET,DELTAT 

INTEGER NSTEPS,MSATS,NSATW(10),NSATID(9) 

INTEGER MRXT,MRXT,MRXH,NRXH,MRXD,MRZ,NRZ,NOSA 
C 

COMMON /C6/ A,B,C,D,U,AT,BT,UT 

REAL*8 A(9,9,10,10),B(9,9,10),C(9,9,10,10),D(9,9,10),0(9,1) 

REAL*8 AT(9,9,10,10),BT(9,9,10),07(9,1) 

C 

COMMON /C7/ BIAS,WBIAS,SLOPE,NULL,IDENT 

REAL*8 BIAS(9),WBIAS(9),SL0PE(9),NULL(9,9),IDENT(9,9) 

C 

COMMON /C8/ NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST, 

1 N0NOIS,NPE,NC2INC,NC2SZ,NC20N,NGE0M,NGMSZ,NGON,NGSZ 

INTEGER NERRON,NERROF,NHYPON,NWINDW,NWINC,NWSIZE,NCOAST 

INTEGER NONOIS,NPE,NC2INC,NC2SZ,WC20N,NGEOM,NGMSZ,NGOM,NGSZ 

C 

COMMON /C9/ VSAVE,VBLK,CHI,SATCHI,STPCHI,VBLKA,VARINV,RESVAR, 

1 SATCOM,NDOF,NDFSTP,NDISAT,MDISTP,NOERR,NALOUT 

REAL*8 VSAVE(9,1200),VBLK(9,10),CHI(120),SATCHI(9),STPCHI(IO) 

REAL*8 VBLKA(9,10),VARIMV(9,9,10),RESVAR(9,10),SATC0M(9) 

INTEGER ND0F(12O),NDFSTP(10),ND1SAT(9),ND1STP(10),MOERR,NALOUT 

C 

COMMON /CIO/ XDET,PDET,QDET,PY,PXY,YHAT,ZY,HY,PHIY,PHIYT,qY 

1 ,PHID,PHIDTR 

REAL*8 XDET(9,1),PDET(9,9),QDET(9,9),PY(9,2),PXY(9,2) 

REAL*8 YHAT(9,1),ZY(9,1),HY(9,2),PHIY(9,2),PHIYT(9,2),QY(9,2) 

REAL*8 PHID(9,9),PHIDTR(9,9) 

C 

COMMON /C12/ CHITBL,TBLSIZ,TBLDOF,LOCSIZ 

REAL*8 CHITBL(66,54),TBLSIZ(54),TBLD0F(66),L0CSIZ(4) 

C 

COMMON /C13/ SMAT,PWOFFM,PWOFFD 

REAL*8 SMAT(9,10),PWOFFN(lO),PWOFFD(10) 

C 

REAL*8 XLA(9,1),XSUM(9,1),VSUM(9,1),S(9,1),XTLA(9,1) 

REAL*8 C2D(9,9),D2D(9,9),C0NM(9,1),STEMP(9,1),YTRUE(18,1) 

REAL*8 PREDIC(9,1),A2D(9,9) 

REAL*8 F(11,2),FT(11,11),FSQ(11,2),FSQIMV(11,2),FCOM(ll,ll) 
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REAL*8 XLS(11,1),WDATA(11,1),YBIAS(18),YSL0P(18),YRAMP(18) 

REAL*8 UNEW(9,1),UTNEW(9,1) 

C 
C FIRST GET THE VBLKA USING THE U VECTOR 

C 

CALL NEWVAU 

C 

C NOW GET THE CHI-SQUARE STATISTICS FOR THE WHOLE VBLKA 

C 

CALL GETCHI(l) 

C 

IF (NALOUT.EQ.IO) THEN 

C 

C USE THIS LOOP FOR PRINTING OUT STATISTICS 

C BEFORE CENSORING GETS KICKED IN 

C 

WRITE(6,103)NDFSTP(1).CHITBL(NDFSTP(1),L0CSIZ(2)), 

1 (STPCHI(I),I=1,NWSIZE) 

WRITE(6,104)NWSIZE,CHITBL(NWSIZE,LOCSIZ(3)), 

1 (SATCHI(I),I=1,NRZ) 

C 

ENDIF 

C 

C NOW GET THE DECISION VECTORS FOR THE WHOLE VBLKA 

C 

CALL DECIDEd.O) 

C 
STAT=O.DO 

NUMD0F=0 

DO 1 NC=1,NWSIZE 

STAT=STAT+ STPCHI(NC) 

NUMDOF=NUMDOF+NDFSTP(NC) 

1 CONTINUE 

C 

IF (NOERR.NE.l) THEN 

WRITE(6,101)NWINC 

WRITE(6,102)STAT,NUMDOF,CHITBL(NUMDOF,LOCSIZ(1)) 

WRITE(6,103)NDFSTP(1),CHITBL(NDFSTP(1),L0CSIZ(2)), 

1 (STPCHI(I),I=1,NWSIZE) 
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WRITE(6,104)NWSIZE.CHITBL(NWSIZE,L0CSIZ(3)), 

1 (SATCHI(I),I=1,WRZ) 

ENDIF 

C 

C ZERO OUT SMAT 

C 

CALL SUMCMRXH,0,SMAT,NRZ,NWSIZE,NULL,MULL) 

C 

IF (NOERR.EQ.l) THEM 

C 

C THERE ARE NO SIGNALS IN THE RESIDUALS. IN THIS CASE, ONLY 

C UPDATE THE U VECTORS 

C 

CALL NEWU(NWSIZE,UNEW) 

CALL NEWUT(NWSIZE,UTNEW) 

C 

ELSE 

C 
C THERE ARE SIGNALS THAT THE RESIDUALS ARE NOT BELEIVEABLE 

C UNDER THE HO HYPOTHESIS. IN THIS CASE, TRY TO REMOVE THE 

C BIAS FROM THE BLOCK OF RESIDUALS. DO THIS BY GETTING 

C THE SMAT. 

C 

DO 10 MWK=1,NWSIZE 

CALL SUMCMRXH,0,S,NRZ,1,NULL,NULL) 

IF (NDISTP(NWK).EQ.1) THEN 

CALL PREDCT(PREDIC,NWK) 

CALL ADDON(MRXH,S,NRZ,1,PREDIC) 

C 

C NOW UPDATE VBLKA.AMD THE DECISION VECTORS 
C 

CALL NEWVAS(S,NWK) 

CALL GETCHI(NWK) 

CALL DECIDE(NWK,1) 

ENDIF 

C 

C NOW STORE S IN SMAT 

C 

DO 20 MR=1,NRZ 
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SMAT(NR,WWK)=S(NR,1) 

20 CONTINUE 

10 CONTINUE 

ENDIF 

C 

IF (NOERR.NE.l) WRITE(6,105)(STPCHI(I),1=1,NWSIZE) 

C 

IF ((NOERR.NE.l) .AND. (NALOUT.EQ.D) THEN 

C 

WRITE(6,71) 

DO 73 NR=1,NRZ 

WRITE(6,72)(SMAT(NR,NC),NC=1,NWSIZE) 

73 CONTINUE 

C 

WRITE(6,75) 

DO 76 NR=1,NRZ 

WRITE(6,72)(VBLKA(NR,NC),NC=1,NWSIZE) 

76 CONTINUE 

C 

WRITE(6,475) 

DO 476 NR=1,NRZ 

WRITE(6,72)(VBLK(NR,NC),NC=1,NWSIZE) 

476 CONTINUE 

C 

ENDIF 
C 

C FINISHED GETTING SMAT. NOW FIND THE STATE ESTIMATES 

C WITH SMAT REMOVED AND PRINT THE RESULTS. 

C 

IF (NOERR.NE.l) CALL HISTRY(K) 

C 

IF (NOERR.NE.l) THEN 

IF (NALOUT.EQ.D WRITE(6,17) (U(1,1) , 1=1, NRXD) 

IF (NALOUT.EQ.D WRITE(6,117)(UT(I,1),1=1,NRXH) 

ENDIF 

NOW TAKE CARE OF SOME DETAILS OF PRINTING THE 

VALUE OF THE ERROR FUNCTION. 
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DO 14 1=1,NRZ 

YTRUE(I,1)=WBIAS(I) 

YTRIJE ( I+NSATS , 1 ) =SLOPE ( I ) 

CONTINUE 

IF (NALOUT.EQ.l) THEN 

IF (K.LT.MERRON) THEN 

WRITE(6,48) 

WRITE(6,42)(I,I=1,NSATS) 

WRITE(6,43)(NULL(I,1),1=1,NSATS) 

WRITE(6,41)(I,I=1,NSATS) 

WRITE(6,43)CNULL(I,1),I=1,NSATS) 

ELSE 

WRITE(6,48) 

WRITE(6,42)(I,I=1,NSATS) 

WRITE(6,43)(YTRUE(I,1),I=1,NSATS) 

WRITE(6,41)(I,1=1,NSATS) 
IST=NSATS+1 

IE=2*NSATS 

WRITE(6,43)(YTRUE(I,1),I=IST,IE) 

ENDIF 

END IF 

NOW PROJECT THE WBIAS AHEAD FOR THE NEXT WINDOW 

KNEXT=K+1 

IF (K.GE.NERRON) THEN 
DO 59 1=1,NSATS 

WBIAS(I)=WBIAS(I) + SLOPE(I)*DELTAT*FLOAT(NWSIZE) 

CONTINUE 

ENDIF 

IF (KNEXT.GE.NERROF) THEN 
DO 61 1=1,NSATS 

WBIAS(I)=0.DO 

BIAS(I)=O.DO 

SLOPE(I)=O.DO 

CONTINUE 

ENDIF 
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C 
42 F0RMAT(1X,9(5X,'BM1,3X)) 

41 F0RMAT(1X,9(5X,'SM1,3X)) 

43 F0RMAT(1X,9(F9.2,1X)) 

71 FORMATClX,'SMAT') 

72 FORMATClX,10(F9.3,IX)) 

75 FORMATClX,'V BLOCK ALPHA') 

475 FORMATClX,'V BLOCK ') 

C 

101 FORMATClX,15C'*'),' RESULTS OF WINDOW#',14,IX,15C'*')) 

102 FORMATClX,'INITIAL STATS ',2X,'WINDOW CHI= ', 

1 F8.2,2X,'D0F=',I2,2X,'THRESH=',F7.2) 

103 FORMATClX,'STPCHI:DOF=',12,IX,'T=',F6.2,2X, 

1 'STATS=',10CF7.2,1X)) 

104 FORMATClX,'SATCHI:DOF=',12,IX,'T=',F6.2,2X, 

1 'STATS=',10CF7.2,1X)) 

105 FORMATClX,'STPCHI AFTER SMAT: STATS=',10CF7.2,IX)) 

C 

48 FORMATClX,'TRUE BIAS AND SLOPE OF RAMP IN CURRENT WINDOW') 

17 F0RMATC4X,'U VECTOR ',4CF10.3,IX),/13X,4CF10.3,IX)) 

117 F0RMATC4X,'UT VECTOR',4CF10.3,IX),/13X,4CF10.3,IX)) 

C 

RETURN 

END 

C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

CCCCC CCCCC 

CCCCC OUTPUT SUBROUTINES ARE AS FOLLOWS CCCCC 

CCCCC CCCCC 

CCCCC STORE,SIGMA,PLOT,OUTXP,STEADY CCCCC 

CCCCC CCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

C THESE SUBROUTIIÎES ARE NOT LISTED IN THE DISSERATIOÎÎ C 
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